# kamstrup



MULTICAL<sup>®</sup> 402

## **Contents**

| 1                                                                               | Gei                                                                                                                                | neral description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6                                                                            |
|---------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
|                                                                                 | 1.1                                                                                                                                | Mechanical construction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7                                                                            |
| 2                                                                               | Tec                                                                                                                                | chnical data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8                                                                            |
|                                                                                 | 2.1                                                                                                                                | Approved meter data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8                                                                            |
|                                                                                 | 2.2                                                                                                                                | Electrical data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 9                                                                            |
|                                                                                 | 2.3                                                                                                                                | Mechanical data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                              |
|                                                                                 | 2.4                                                                                                                                | Material                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11                                                                           |
|                                                                                 | 2.5                                                                                                                                | Accuracy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12                                                                           |
| 3                                                                               | Тур                                                                                                                                | be overview                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 13                                                                           |
| -                                                                               | 3.1                                                                                                                                | Type and programming overview                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 13                                                                           |
| -                                                                               | 3.2                                                                                                                                | Type number composition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 14                                                                           |
| -                                                                               | 3.3                                                                                                                                | PROG, A-B-CCC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 16                                                                           |
| -                                                                               | 3.4                                                                                                                                | Display coding                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                              |
| -                                                                               | 3.5                                                                                                                                | >EE< Configuration of MULTITARIFF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 20                                                                           |
| -                                                                               | 3.6                                                                                                                                | >FF< Input A (VA), pulse division, >GG< Input B (VB), pulse division                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 21                                                                           |
| -                                                                               | 3.7                                                                                                                                | >PP< Output C and Output D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 24                                                                           |
| -                                                                               | 3.8                                                                                                                                | Configuration during set up of country code                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 24                                                                           |
| 4                                                                               | Din                                                                                                                                | nensioned sketches                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 26                                                                           |
| 5                                                                               | Pre                                                                                                                                | essure loss                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 29                                                                           |
|                                                                                 |                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                              |
| 6                                                                               | Ins                                                                                                                                | tallation phase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                              |
| 6                                                                               | <b>Ins</b><br>5.1                                                                                                                  | tallation phase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>30</b>                                                                    |
| 6                                                                               | <b>Ins</b><br>5.1<br>5.2                                                                                                           | tallation phase<br>Installation requirements<br>Installation angle of MULTICAL <sup>®</sup> 402                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>30</b><br>                                                                |
| 6                                                                               | <b>Ins</b><br>5.1<br>5.2<br>5.3                                                                                                    | tallation phase<br>Installation requirements<br>Installation angle of MULTICAL <sup>®</sup> 402<br>Straight inlet                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>30</b><br>                                                                |
| 6                                                                               | <b>Ins</b><br>5.1<br>5.2<br>5.3<br>5.4                                                                                             | tallation phase<br>Installation requirements<br>Installation angle of MULTICAL <sup>®</sup> 402<br>Straight inlet<br>Installation examples                                                                                                                                                                                                                                                                                                                                                                                            |                                                                              |
| 6                                                                               | <b>Ins</b><br>5.1<br>5.2<br>5.3<br>5.4<br>5.5                                                                                      | tallation phase<br>Installation requirements<br>Installation angle of MULTICAL <sup>®</sup> 402<br>Straight inlet<br>Installation examples<br>Operating pressure of MULTICAL <sup>®</sup> 402                                                                                                                                                                                                                                                                                                                                         | <b>30</b><br>                                                                |
| 6                                                                               | <b>Ins</b><br>5.1<br>5.2<br>5.3<br>5.4<br>5.5<br>5.6                                                                               | tallation phase<br>Installation requirements<br>Installation angle of MULTICAL® 402<br>Straight inlet<br>Installation examples<br>Operating pressure of MULTICAL® 402<br>Mounting in forward or return pipe                                                                                                                                                                                                                                                                                                                           | <b>30</b><br>                                                                |
| 6                                                                               | Ins<br>5.1<br>5.2<br>5.3<br>5.4<br>5.5<br>5.6<br>5.7                                                                               | Itallation phase         Installation requirements         Installation angle of MULTICAL® 402         Straight inlet         Installation examples         Operating pressure of MULTICAL® 402         Mounting in forward or return pipe         EMC conditions                                                                                                                                                                                                                                                                     | <b></b>                                                                      |
| 6                                                                               | Ins<br>5.1<br>5.2<br>5.3<br>5.4<br>5.5<br>5.6<br>5.6<br>5.7<br>5.8                                                                 | Installation phase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>30</b>                                                                    |
| 6                                                                               | Ins<br>5.1<br>5.2<br>5.3<br>5.4<br>5.5<br>5.6<br>5.6<br>5.7<br>5.8<br><b>Ca</b> l                                                  | Installation phase<br>Installation requirements<br>Installation angle of MULTICAL® 402<br>Straight inlet<br>Installation examples<br>Operating pressure of MULTICAL® 402<br>Mounting in forward or return pipe<br>EMC conditions<br>Climatic conditions                                                                                                                                                                                                                                                                               | <b></b>                                                                      |
| 6<br>6<br>7                                                                     | Ins<br>5.1<br>5.2<br>5.3<br>5.4<br>5.5<br>5.6<br>5.7<br>5.8<br><b>Cal</b><br>7.1                                                   | Installation phase<br>Installation requirements<br>Installation angle of MULTICAL® 402<br>Straight inlet<br>Installation examples<br>Operating pressure of MULTICAL® 402<br>Mounting in forward or return pipe<br>EMC conditions<br>Climatic conditions<br>Iculator functions<br>Measuring sequences                                                                                                                                                                                                                                  |                                                                              |
| 6<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>() | Ins<br>5.1<br>5.2<br>5.3<br>5.4<br>5.5<br>5.6<br>5.7<br>5.8<br><b>Cal</b><br>7.1<br>7.2                                            | Installation phase<br>Installation requirements<br>Installation angle of MULTICAL® 402<br>Straight inlet<br>Installation examples<br>Operating pressure of MULTICAL® 402<br>Mounting in forward or return pipe<br>EMC conditions<br>Climatic conditions<br>Iculator functions<br>Measuring sequences<br>Energy calculation                                                                                                                                                                                                            |                                                                              |
| 6<br>6<br>7                                                                     | Ins<br>5.1<br>5.2<br>5.3<br>5.4<br>5.5<br>5.6<br>5.7<br>5.8<br><b>Cal</b><br>7.1<br>7.2<br>7.3                                     | Installation phase<br>Installation requirements<br>Installation angle of MULTICAL <sup>®</sup> 402<br>Straight inlet<br>Installation examples<br>Operating pressure of MULTICAL <sup>®</sup> 402<br>Mounting in forward or return pipe<br>EMC conditions<br>Climatic conditions<br>Climatic conditions<br>Measuring sequences<br>Energy calculation<br>Application types                                                                                                                                                              |                                                                              |
| 6<br>7                                                                          | Ins:<br>5.1<br>5.2<br>5.3<br>5.4<br>5.5<br>5.6<br>5.7<br>5.8<br><b>Cal</b><br>7.1<br>7.2<br>7.3<br>7.4                             | Installation phase<br>Installation requirements<br>Installation angle of MULTICAL® 402<br>Straight inlet<br>Installation examples<br>Operating pressure of MULTICAL® 402<br>Mounting in forward or return pipe<br>EMC conditions<br>Climatic conditions<br>Climatic conditions<br>Measuring sequences<br>Energy calculation<br>Application types<br>Combined heat/cooling metering                                                                                                                                                    | <b></b>                                                                      |
| 6<br>7<br>7                                                                     | Ins<br>5.1<br>5.2<br>5.3<br>5.4<br>5.5<br>5.6<br>5.7<br>5.8<br><b>Cal</b><br>7.1<br>7.2<br>7.3<br>7.4<br>7.5                       | Installation phase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                              |
| 6<br>7<br>7                                                                     | Ins<br>5.1<br>5.2<br>5.3<br>5.4<br>5.5<br>5.6<br>5.7<br>5.8<br><b>Cal</b><br>7.1<br>7.2<br>7.3<br>7.4<br>7.5<br>7.6                | Installation phase.         Installation requirements.         Installation angle of MULTICAL® 402         Straight inlet.         Installation examples         Operating pressure of MULTICAL® 402         Mounting in forward or return pipe.         EMC conditions.         Climatic conditions.         Installator functions.         Measuring sequences.         Energy calculation         Application types.         Combined heat/cooling metering.         Min. and max. flow and power         Temperature measurement. | <b></b>                                                                      |
| 6<br>7<br>7                                                                     | Ins:<br>5.1<br>5.2<br>5.3<br>5.4<br>5.5<br>5.6<br>5.7<br>5.8<br><b>Cal</b><br>7.1<br>7.2<br>7.3<br>7.4<br>7.5<br>7.6<br>7.7        | tallation phase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b></b>                                                                      |
| 6<br>7<br>7                                                                     | Ins:<br>5.1<br>5.2<br>5.3<br>5.4<br>5.5<br>5.6<br>5.7<br>5.8<br><b>Cal</b><br>7.1<br>7.2<br>7.3<br>7.4<br>7.5<br>7.6<br>7.7<br>7.8 | tallation phase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>30</b> 30 31 32 33 33 35 36 37 37 <b>38</b> 38 38 38 40 40 42 43 44 44 50 |

### MULTICAL<sup>®</sup> 402

| 7.10  | Data loggers                                                   |    |
|-------|----------------------------------------------------------------|----|
| 7.11  | Setup via front keys                                           |    |
| 7.12  | Reset via front keys                                           |    |
| 8 Flo | ow Sensor                                                      | 60 |
| 8.1   | Ultrasound combined with piezo ceramics                        | 60 |
| 8.2   | Principles                                                     |    |
| 8.3   | Transit time method                                            | 60 |
| 8.4   | Signal paths                                                   |    |
| 8.5   | Flow limits                                                    |    |
| 9 Te  | emperature sensors                                             | 63 |
| 9.1   | Sensor types                                                   |    |
| 9.2   | Cable influence                                                |    |
| 9.3   | Installation                                                   |    |
| 9.4   | Pocket sensors                                                 |    |
| 9.5   | Pt500 short direct sensor set                                  |    |
| 10 F  | Power supply                                                   |    |
| 10.1  | Built-in 2 x AA-cell lithium battery                           |    |
| 10.2  | Built-in D-cell lithium battery                                |    |
| 10.3  | Battery lifetimes of 2 x AA-cell                               |    |
| 10.4  | Battery lifetimes of D-cell                                    |    |
| 10.5  | Supply Module 230 VAC                                          | 72 |
| 10.6  | Supply Module 24 VAC                                           |    |
| 10.7  | Change of supply unit                                          |    |
| 10.8  | Mains cables                                                   |    |
| 10.9  | Danish regulations for the connection of mains operated meters |    |
| 11 (  | Communication Modules                                          | 75 |
| 11.1  | Communication Modules                                          | 75 |
| 11.2  | Pulse outputs (CE and CV)                                      |    |
| 11.3  | Pulse inputs VA and VB                                         |    |
| 11.4  | Modules                                                        |    |
| 11.5  | Mounting an external antenna                                   |    |
| 11.6  | Retrofitting modules                                           |    |
| 12 [  | Data Communication                                             |    |
| 12.1  | MULTICAL <sup>®</sup> 402 Data Protocol                        |    |
| 12.2  | Optical eye                                                    |    |
| 13 (  | Calibration and verification                                   |    |
| 13.1  | Connector                                                      |    |
| 13.2  | Test – verification mode                                       |    |
| 13.3  | Handling of different test methods                             |    |
| 13.4  | True energy calculation                                        |    |

| 14   | METERTOOL HCW                                                   | 95  |
|------|-----------------------------------------------------------------|-----|
| 14.1 | 1 Introduction                                                  | 95  |
| 14.2 | 2 METERTOOL HCW for MULTICAL <sup>®</sup> 402                   | 96  |
| 14.3 | B How to use METERTOOL HCW                                      |     |
| 14.4 | 4 METERTOOL HCW Settings                                        |     |
| 14.5 | 5 Verification of MULTICAL <sup>®</sup> 402 using METERTOOL HCW |     |
| 14.6 | 6 Flow sensor adjustment                                        |     |
| 14.7 | 7 LogView MULTICAL <sup>®</sup> 402                             |     |
| 15   | Approvals                                                       |     |
| 15.1 | 1 Type approvals                                                |     |
| 15.2 | 2 The Measuring Instrument Directive                            |     |
| 16   | Troubleshooting                                                 |     |
| 17   | Disposal                                                        | 112 |
| 18   | Documents                                                       |     |

## 1 General description

MULTICAL<sup>®</sup> 402 is a static heat meter, cooling meter or combined heat/cooling meter based on the ultrasonic principle. The meter is intended for energy measurement in almost all types of thermal installations where water is used as the energy-conveying medium.

According to EN 1434 MULTICAL<sup>®</sup> 402 can be designated a "hybrid instrument" also called a compact meter. In practice this means that flow sensor and calculator must not be separated.

If flow sensor and calculator have been separated and the seals, therefore, broken, the meter is no longer valid for billing purposes. Furthermore, the factory guarantee no longer applies.

MULTICAL<sup>®</sup> 402 employs ultrasonic measuring techniques, ASIC and microprocessor technology. All calculating and flow measuring circuits are collected on one single board, thus providing a compact and rational design and, in addition, exceptionally high measuring accuracy and reliability is obtained.

The volume is measured using bidirectional ultrasonic technique based on the transit time method, proven a long-term stable and accurate measuring principle. Two ultrasonic transducers are used to send sound signals both against and with the flow. The ultrasonic signal travelling with the flow reaches the opposite transducer first. The time difference between the two signals can be converted into flow velocity and thereby also volume.

Accurately matched Pt500 or Pt100 sensors measure the temperatures in forward and return pipes according to EN 60751. MULTICAL<sup>®</sup> 402 is available with a set of Pt500 sensors, either short direct sensors according to EN 1434-2 or D 5.8 mm pocket sensors which fit Kamstrup's stainless steel sensor pockets.

The accumulated heat energy and/or cooling energy can be displayed in kWh, MWh, GJ or in Gcal, all in the form of seven significant digits and a measuring unit. The display has been specially designed to obtain long lifetime and sharp contrast in a wide temperature range.

Other possible readings are: accumulated water consumption, operating hour counter, current temperature measurements, current flow and power readings. Furthermore, MULTICAL<sup>®</sup> 402 can be configured to display monthly and yearly loggings, target date data, max./min. flow, max./min. power, information code, current date as well as user-defined tariffing.

MULTICAL<sup>®</sup> 402 is powered by an internal D-cell lithium battery with a lifespan of up to 16 years or a 2xAA lithium packet with a lifespan of up to 6 years. Alternatively, the meter can be mains supplied, either by 24 VAC or 230 VAC.

In addition to the energy meter's own data MULTICAL<sup>®</sup> 402 can display the accumulated consumptions of two extra water meters, e.g. cold and hot water meters, which supply a contact signal to MULTICAL<sup>®</sup> 402 via reed-switch or electronic output. The contact signals from the extra water meters are connected via the communication modules.

A multiple plug placed beneath the seal is used in connection with calibration and adjustment during verification as well as in connection with communication modules. MULTICAL<sup>®</sup> 402 is available with communication modules for Radio, M-Bus and RS232.

In designing MULTICAL<sup>®</sup> 402 we have attached great importance to flexibility through programmable functions and plug-in modules (see paragraph 11 and 14) in order to secure optimum use in a wide range of applications. In addition, the construction makes it possible to update previously installed MULTICAL<sup>®</sup> 402 via the PC-program METERTOOL.

This technical description has been written with a view to enabling operations managers, meter installers, consulting engineers and distributors to utilize all functions comprised in MULTICAL<sup>®</sup> 402. Furthermore, the description is directed to laboratories performing tests and verification.

### **1.1 Mechanical construction**



Figure 1

- 1 Transparent top cover with front plate
- 2 Sealing screw for verification cover
- **3** Verification cover incl. pushbuttons. The supply unit's cover can be opened without breaking the verification seal
- **4** Supply: D-cell or 2xAA-cell batteries, 24 VAC or 230 VAC. Can be replaced without breaking the verification seal.
- 5 Cabinet for electronics unit
- 6 Screws for fitting
- 7 Fitting. Is also applicable for wall mounting
- 8 Meter case with holes for cable retainers (cable retainers: 1650-145)
- 9 Sensor connecting piece and blind plug for short direct sensor

## 2 Technical data

## 2.1 Approved meter data

| Approvals                               | DK-0200-MI004-0                                                   | 013                                                                                                                                |  |  |
|-----------------------------------------|-------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Standards                               | prEN 1434:2009                                                    | prEN 1434:2009                                                                                                                     |  |  |
| EU directives                           | Measuring Instru<br>Electromagnetic (                             | Measuring Instrument Directive, Low Voltage Directive,<br>Electromagnetic Compatibility Directive, Pressurised equipment Directive |  |  |
| Heat meter approval                     | DK-0200-MI004-0                                                   | 013                                                                                                                                |  |  |
| Temperature range<br>Differential range | θ: 2°C160°C<br>∆Θ: 3 K150 K                                       | The stated minimum temperatures<br>apply to the type approval only.<br>The meter has no cutoff for low temperature                 |  |  |
| Cooling meter                           |                                                                   | and thus measures as low temperatures as                                                                                           |  |  |
| Temperature range                       | θ: 2°C50°C                                                        | 0.01°C and 0.01 K.                                                                                                                 |  |  |
| Differential range                      | ∆ <b>Θ:</b> 3 K40 K                                               |                                                                                                                                    |  |  |
| Accuracy                                |                                                                   |                                                                                                                                    |  |  |
| - Calculator<br>- Flow sensor           | $E_{c} = \pm (0.5 + \Delta \Theta)$<br>$E_{f} = \pm (2 + 0.02 G)$ | <sub>min</sub> /ΔΘ) %<br>q <sub>p</sub> /q), but not exceeding ±5 %                                                                |  |  |
| Temperature sensors                     | -Type 402-V<br>-Type 402-W/T                                      | Pt100 – EN 60 751, 2-wire connection<br>Pt500 – EN 60 751, 2-wire connection                                                       |  |  |
| EN 1434 designation                     | Environmental cla                                                 | ass A                                                                                                                              |  |  |
| MID designation                         | Mechanical environment: Class M1                                  |                                                                                                                                    |  |  |
|                                         | Electromagnetic e                                                 | environment: Class E1                                                                                                              |  |  |
|                                         | Non-condensing                                                    | environment, closed location                                                                                                       |  |  |

(indoors), 5...55°C

|                              |          |          |       |       | 5               |            | 1 1    |
|------------------------------|----------|----------|-------|-------|-----------------|------------|--------|
|                              | Nom.     | Max.     | Min.  | Min.  | Pressure        | Connection | Length |
|                              | now      | now      | now   | cuton | 1055            | on meter   |        |
|                              | qp       | qs       | qi    |       | $\Delta p @ qp$ |            |        |
| Type number                  | [ m³/h ] | [ m³/h ] | [l/h] | [l/h] | [bar]           |            | [mm]   |
| 402xxxxxx <u>1</u> xxx       | 0.6      | 1.2      | 6     | 3     | 0.04            | G³⁄4B      | 110    |
| 402xxxxxx <b><u>3</u>xxx</b> | 0.6      | 1.2      | 6     | 3     | 0.04            | G1B        | 190    |
| 402xxxxxx <b>4</b> xxx       | 1.5      | 3.0      | 15    | 3     | 0.25            | G3⁄4B      | 110    |
| 402xxxxxx <b>5</b> xxx       | 1.5      | 3.0      | 15    | 3     | 0.25            | G3⁄4B      | 165    |
| 402xxxxx <b>7</b> xxx        | 1.5      | 3.0      | 15    | 3     | 0.25            | G1B        | 130    |
| 402xxxxx <b>8</b> xxx        | 1.5      | 3.0      | 15    | 3     | 0.25            | G1B        | 165    |
| 402xxxxxx <b>9</b> xxx       | 1.5      | 3.0      | 15    | 3     | 0.25            | G1B        | 190    |
| 402xxxxx <b>A</b> xxx        | 2.5      | 5.0      | 25    | 5     | 0.03            | G1B        | 130    |
| 402xxxxx <b><u>B</u>xxx</b>  | 2.5      | 5.0      | 25    | 5     | 0.03            | G1B        | 190    |
| 402xxxxxx <b>D</b> xxx       | 3.5      | 7.0      | 35    | 7     | 0.07            | G5/4B      | 260    |
| 402xxxxxx <b>F</b> xxx       | 6.0      | 12       | 60    | 12    | 0.19            | G5/4B      | 260    |
| 402xxxxx <b>G</b> xxx        | 6.0      | 12       | 60    | 12    | 0.19            | DN25       | 260    |
| 402xxxxxx <b>H</b> xxx       | 10       | 20       | 100   | 20    | 0.06            | G2B        | 300    |
| 402xxxxxx <b>_</b> xxx       | 10       | 20       | 100   | 20    | 0.06            | DN40       | 300    |
| 402xxxxxx <b>K</b> xxx       | 15       | 30       | 150   | 30    | 0.14            | DN50       | 270    |
|                              |          |          |       |       |                 |            |        |

Table 1

### 2.2 Electrical data

#### Calculator data

| Typical accuracy             | Calculator: $E_c \pm (0.15 + 2/\Delta\Theta) \%$                                                                                     | Sensor set: $E_{	au} \pm (0.4$ + 4/ $\Delta \Theta$ ) % |  |  |
|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|--|--|
| Display                      | LCD – 7 (8) digits with digit height 7.6 mm                                                                                          |                                                         |  |  |
| Resolution                   | 9999,999 – 99999,99 – 999999,9 – 99999999                                                                                            |                                                         |  |  |
| Energy units                 | MWh – kWh – GJ – Gcal                                                                                                                |                                                         |  |  |
| Data logger (Eeprom)         | 460 days, 36 months, 15 years, 50 i                                                                                                  | nfo codes                                               |  |  |
| Clock/calendar               | Clock, calendar, leap year compensation, target date                                                                                 |                                                         |  |  |
| Data communication           | KMP protocol with CRC16 used for optical communication as well as modules.                                                           |                                                         |  |  |
| Power of temperature sensors | $<$ 10 $\mu W$ RMS                                                                                                                   |                                                         |  |  |
| Supply voltage               | 3.6 VDC ± 0.1 VDC                                                                                                                    |                                                         |  |  |
| Battery                      | 3.65 VDC, D-cell lithium                                                                                                             | 3.65 VDC, 2xAA cell lithium                             |  |  |
| Replacement interval         |                                                                                                                                      |                                                         |  |  |
| - Wall mounted               | 16 years @ $t_{BAT}$ < 30 °C                                                                                                         | 6 years @ t <sub>BAT</sub> < 30 °C                      |  |  |
| - Mounted on flow            | 12 years @ $t_{BAT}$ < 40 °C                                                                                                         | 5 years @ t <sub>BAT</sub> < 40 °C                      |  |  |
| sensor                       | Data modules, frequent data communication and high ambient temperature reduce the replacement interval (See paragraph 10.3 and 10.4) |                                                         |  |  |
| Mains supply                 | 230 VAC +15/-30%, 50/60 Hz<br>24 VAC ±50%, 50/60 Hz                                                                                  |                                                         |  |  |
| Insulation voltage           | 4 kV                                                                                                                                 |                                                         |  |  |
| Power consumption            | < 1W                                                                                                                                 |                                                         |  |  |
| Backup supply                | Integral SuperCap eliminates interru                                                                                                 | ptions due to short-term power failures                 |  |  |
| EMC data                     | Fulfil EN 1434 class A (MID class E1)                                                                                                |                                                         |  |  |

#### Temperature measurement

|                      |                   |                                                                    | T1<br>Forward<br>temperature | T2<br>Return<br>temperature     | Ʃ (T1-T2)<br>Heat<br>metering | Ʃ (T2-T1)<br>Cooling<br>metering |
|----------------------|-------------------|--------------------------------------------------------------------|------------------------------|---------------------------------|-------------------------------|----------------------------------|
| 402-V<br>2-W Pt100   | Measurin<br>range | g                                                                  | 0.00165.00°C                 | 0.00165.00°C                    | 0.01165.00K                   | 0.01165.00K                      |
| 402-W/T<br>2-W Pt500 | Measurin<br>range | g                                                                  | 0.00165.00°C                 | 0.00165.00°C                    | 0.01165.00K                   | 0.01165.00K                      |
| Max. cable len       | gths              | Pt100,                                                             | 2-wire                       | Pt500, 2-wire                   |                               |                                  |
| (Max. ø6 mm c        | able)             | 2 x 0.25 mm <sup>2</sup> : 2.5 m<br>2 x 0.50 mm <sup>2</sup> : 5 m |                              | 2 x 0.25 mm <sup>2</sup> : 10   | m                             |                                  |
|                      |                   |                                                                    |                              | 2 x 0.50 mm <sup>2</sup> : 20 m |                               |                                  |
|                      |                   | 2 x 1.0                                                            | 0 mm <sup>2</sup> : 10 m     |                                 |                               |                                  |
|                      |                   |                                                                    |                              |                                 |                               |                                  |

### MULTICAL<sup>®</sup> 402

#### Pulse inputs VA and VB

| Pulse inputs VA and VB             | Water meter connection                           |
|------------------------------------|--------------------------------------------------|
| VA: 65-66 and VB: 67-68 via module | FF(VA) and $GG(VB) = 0140$                       |
| Pulse input                        | 680 k $\Omega$ pull-up to 3.6 V                  |
| Pulse ON                           | < 0.4 V in > 30 ms.                              |
| Pulse OFF                          | > 2.5 V in > 1.1 s.                              |
| Pulse frequency                    | < 0.5 Hz                                         |
| Electrical isolation               | None                                             |
| Max. cable length                  | 25 m                                             |
| Requirements to ext. contact       | Leak current at function open $< 1\ \mu\text{A}$ |

#### Pulse outputs CE and CV

| CE: 16-17 and CV 18-19 via module |                                       |
|-----------------------------------|---------------------------------------|
| Туре                              | Open collector (OB)                   |
| Pulse duration                    | Optionally 32 ms. or 100 ms.          |
| External voltage                  | 530 VDC                               |
| Current                           | 110 mA                                |
| Residual stress                   | $U_{ce} \approx 1 \text{ V}$ at 10 mA |
| Electrical isolation              | 2 kV                                  |
| Max. cable length                 | 25 m                                  |

### 2.3 Mechanical data

| Environmental class | Fulfils EN 1434 class A (MID class E1) |                                                    |  |
|---------------------|----------------------------------------|----------------------------------------------------|--|
| Ambient temperature | 555°C, non-                            | condensing, closed location (installation indoors) |  |
| Protection class    | Calculator:                            | IP54                                               |  |
|                     | Flow sensor:                           | IP65                                               |  |

#### Medium temperatures

| Heat meters 402-V/W          | 15130°C                     | At medium temperatures above 90°C in flow sensor, use of   |  |
|------------------------------|-----------------------------|------------------------------------------------------------|--|
| Cooling meters 402-T         | 250°C                       | flange meters is recommended, and the calculator should be |  |
| Heat/cooling meters 402-T    | 2130                        | wall-mounted.                                              |  |
| Medium in flow meter         | Water                       |                                                            |  |
| Storage temperature          | -2560°C (c                  | Irained flow sensor)                                       |  |
| Pressure stage (with thread) | PN16                        |                                                            |  |
| Pressure stage (with flange) | PN25                        |                                                            |  |
| Weight                       | From 1.8 to 1               | 2 kgs. depending on flow meter size                        |  |
| Flow sensor cable            | 1.5 m (cable undemountable) |                                                            |  |
| Connecting cables            | ø3.56 mm                    |                                                            |  |
| Supply cable                 | ø510 mm                     |                                                            |  |

### 2.4 Material

| Wetted parts      | Case, gland         | DZR brass (Dezincificationproof brass)                        |
|-------------------|---------------------|---------------------------------------------------------------|
|                   | Case, flange        | Stainless steel, W.no. 1,4308                                 |
|                   | Transducer          | Stainless steel, W.no. 1,4401                                 |
|                   | Gaskets             | EPDM                                                          |
|                   | Measuring tube      | Thermoplastic, PES 30% GF                                     |
|                   | Reflectors          | Thermoplastic, PES 30% GF and Stainless steel, W.no. 1,4301   |
| Flow sensor case  | Top/wall fittings   | Thermoplastic, PC 20% GF                                      |
| Calculator case   | Тор                 | Thermoplastic, PC                                             |
|                   | Base                | Thermoplastic, ABS with TPE gaskets (thermoplastic elastomer) |
|                   | Internal cover      | Thermoplastic, ABS                                            |
| Flow sensor cable | Silicone cable with | inner Teflon insulation                                       |

### 2.5 Accuracy

| Heat meter components | MPE according to EN 1434-1                              | MULTICAL <sup>®</sup> 402, typical accuracy |
|-----------------------|---------------------------------------------------------|---------------------------------------------|
| Flow sensor           | Ef $=\pm (2 + 0.02 q_p/q)$ , but not exceeding ±5 %     | $Ef = \pm (1 + 0.01 \text{ qp/q}) \%$       |
| Calculator            | $Ec = \pm (0.5 + \Delta\Theta_{min}/\Delta\Theta) \%$   | $Ec = \pm (0.15 + 2/\Delta\Theta) \%$       |
| Sensor pair           | $Et=\pm (0.5 + 3 \Delta \Theta_{min}/\Delta \Theta) \%$ | $Et = \pm (0.4 + 4/\Delta\Theta) \%$        |



MULTICAL<sup>®</sup> 402  $q_p$  1,5 m³/h @ $\Delta\Theta$  30K

Diagram 1: Total typical accuracy of MULTICAL<sup>®</sup> 402 compared to EN 1434-1

## **3** Type overview

MULTICAL<sup>®</sup> 402 can be ordered in many combinations as required by the customer. First you select the required hardware from the type overview. Then select "Prog", "Config" and "Data" to suit the application in question.

The supplied meter is configured from the factory and ready for use, however it can also be changed/reconfigured after installation.

Please note that the points marked "Total prog" cannot be changed without breaking the verification seal. This means that the change must be carried out by an accredited meter laboratory.

We currently develop new functions and modules for  $MULTICAL^{(8)}$  402. Please contact Kamstrup A/S if your application is not covered by the variants shown.

### 3.1 Type and programming overview



Type number 402xxxxxxxxx (Total prog)

Selection of Pt100/Pt500 calculator, modules, supply, sensor set, flow sensor and language on label



Prog. <u>A-B-CCC</u> (Total prog) Forward/return – Energy unit – Flow meter code

**Config.** <u>D</u>DD-EE-FF-GG-N-PP (Partial prog) Display – Tariff – Pulse inputs Leak sensibility – Pulse outputs

#### Data: (Partial prog.)

-Customer No. -Target date -Tariff limits -Average peak time max./min. -Heat/cooling switching -Date/time

## 3.2 Type number composition

| <b>0</b>                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                      | Ту                                                                                                                                                                 | ре 402-                                                                                                      |   |                                                                                                          |                       |                            |                               |                                      |    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|---|----------------------------------------------------------------------------------------------------------|-----------------------|----------------------------|-------------------------------|--------------------------------------|----|
| Pt100                                                                                                                                                                                                                                              | nections                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                      |                                                                                                                                                                    |                                                                                                              | v |                                                                                                          |                       |                            |                               |                                      |    |
| Pt500                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                      |                                                                                                                                                                    |                                                                                                              | w |                                                                                                          |                       |                            |                               |                                      |    |
| Pt500 (wit                                                                                                                                                                                                                                         | th condensation p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | rotected flow se                                                                                                                                                                                     | ensor for coolir                                                                                                                                                   | ng)                                                                                                          | т |                                                                                                          |                       |                            |                               |                                      |    |
| Modules                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                      |                                                                                                                                                                    |                                                                                                              |   | 00                                                                                                       |                       |                            |                               |                                      |    |
| No module<br>Data + 2 pul<br>Data + 2 pul<br>M-Bus + 2 p<br>M-Bus + 2 p<br>Wireless M-<br>Wireless M-<br>Wireless M-<br>Wireless M-<br>Wireless M-<br>Radio, EU, 4<br>Radio, EU, 4<br>Radio, EU, 4<br>Radio, EU, 4<br>Radio, EU, 4<br>Radio, EU, 4 | se inputs (VA, VB<br>se outputs (CE, C<br>ulse inputs (VA, V<br>ulse outputs (CA, V<br>ulse outputs (VA, V<br>Bus, EU, 868 MH:<br>Bus, EU, 868 MH:<br>Bus, EU, 868 MH:<br>Bus, EU, 868 MH:<br>Bus, C1, Fixed Ne<br>I34 MHz, int. ant.,<br>I34 MHz, int. +ext.<br>I34 MHz, int. +ext.                                                                                                                                                        | )<br>K)<br>CV)<br>(B), MCIII Data<br>z, Mode C1 (Inc<br>z, Mode T1 (Onc<br>z, Mode T1 (Co<br>etwork, (Ind. Ke<br>NET0<br>NET1<br>ant., NET0 + 2<br>ant., NET1 + 2<br>ant., NET1 + 2<br>NET0 + 2 puls | Package<br>1. Key)<br>5. (Ind. Key)<br>1. Key) Alt. Re<br>mmon Key)<br>y)<br>2. pulse inputs<br>pulse outputs<br>pulse outputs<br>pulse outputs<br>e inputs (VA. N | g . +VA, VB<br>(VA, VB)<br>(CE, CV)<br>(VA, VB)<br>; (CE, CV)<br>(B)                                         |   | 00<br>10<br>11<br>20<br>21<br>29<br>30<br>31<br>35<br>37<br>38<br>40<br>41<br>42<br>43<br>44<br>45<br>50 |                       |                            |                               |                                      |    |
| Radio, SE, 4<br>Radio, SE, 4<br>Radio, SE, 4                                                                                                                                                                                                       | 44 MHz, int. ant.,<br>44 MHz, ext. ant.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NET1 + 2 puls<br>, NET0 + 2 puls                                                                                                                                                                     | e inputs (VA, V<br>se inputs (VA,                                                                                                                                  | VB)<br>VB)<br>VB)                                                                                            |   | 52<br>54<br>56                                                                                           |                       |                            |                               |                                      |    |
| Supply<br>No module<br>Battery, 2 x<br>Battery, D-c<br>230 VAC sup<br>24 VAC sup                                                                                                                                                                   | AA<br>ell<br>pply module<br>olv module                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | , ne i i i z puls                                                                                                                                                                                    | νο πηραίο (VA,                                                                                                                                                     | •0)                                                                                                          |   | 50                                                                                                       | 0<br>1<br>2<br>7<br>8 |                            |                               |                                      |    |
| Pt500 sense                                                                                                                                                                                                                                        | or sets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                      |                                                                                                                                                                    |                                                                                                              |   |                                                                                                          | •                     |                            |                               |                                      |    |
| No sensor s<br>Pocket sens<br>Pocket sens<br>Short direct<br>Short direct                                                                                                                                                                          | et<br>or pair with 1.5 m<br>or set with 3.0 m<br>sensor set with 1.<br>sensor set with 3.                                                                                                                                                                                                                                                                                                                                                                                                                                               | cable<br>cable<br>5 m cable<br>0 m cable                                                                                                                                                             |                                                                                                                                                                    |                                                                                                              |   |                                                                                                          |                       | 00<br>0A<br>0B<br>0F<br>0G |                               |                                      |    |
| Flow<br>sensor qp<br>[m³/h]                                                                                                                                                                                                                        | Connection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Length<br>[mm]                                                                                                                                                                                       | CCC<br>Heat                                                                                                                                                        | CCC<br>Cooling                                                                                               |   |                                                                                                          |                       |                            |                               |                                      |    |
| 0,6<br>0,6<br>1,5<br>1,5<br>1,5<br>2,5<br>2,5<br>3,5<br>6,0<br>6,0<br>10<br>10                                                                                                                                                                     | G <sup>3</sup> / <sub>4</sub> B (R <sup>1</sup> / <sub>2</sub> )<br>G1B (R <sup>3</sup> / <sub>4</sub> )<br>G <sup>3</sup> / <sub>4</sub> B (R <sup>1</sup> / <sub>2</sub> )<br>G <sup>3</sup> / <sub>4</sub> B (R <sup>1</sup> / <sub>2</sub> )<br>G1B (R <sup>3</sup> / <sub>4</sub> )<br>G5/4B (R1)<br>DN25<br>G2B (R1 <sup>1</sup> / <sub>2</sub> )<br>DN40<br>DN50 | 110<br>190<br>110<br>165<br>130<br>165<br>190<br>130<br>190<br>260<br>260<br>260<br>260<br>300<br>300<br>300<br>270                                                                                  | 416<br>419<br>419<br>419<br>419<br>419<br>498<br>498<br>498<br>451<br>437<br>437<br>437<br>437<br>478<br>478<br>420                                                | 416<br>407<br>407<br>407<br>407<br>407<br>407<br>498<br>498<br>436<br>438<br>438<br>438<br>483<br>483<br>483 |   |                                                                                                          |                       |                            | 1 3 4 5 7 8 9 A B D F G H J K |                                      |    |
| Meter type                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nodulo R+D)                                                                                                                                                                                          |                                                                                                                                                                    |                                                                                                              |   |                                                                                                          |                       |                            |                               | 2                                    |    |
| Heat meter<br>Heat meter<br>Cooling met<br>Heat/cooling<br>Volumemete<br>Energymete                                                                                                                                                                | (MID: 1<br>(MID: 1<br>) meter<br>er (Hot)<br>er (Cold)<br>r                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | nodule B+D)<br>nodule B+D)                                                                                                                                                                           |                                                                                                                                                                    | 402-T only<br>402-T only<br>402-T only<br>402-T only                                                         |   |                                                                                                          |                       |                            |                               | 2<br>3<br>4<br>5<br>6<br>7<br>8<br>9 |    |
| Country co                                                                                                                                                                                                                                         | de (language on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | label etc.)                                                                                                                                                                                          |                                                                                                                                                                    |                                                                                                              |   |                                                                                                          |                       |                            |                               |                                      | XX |

Contact Kamstrup for information on the availability of the above MULTICAL<sup>®</sup> 402 variants on the individual markets.

#### 3.2.1 Accessories

| 402-000-1000-000 | Battery module with two AA-cells                                        |
|------------------|-------------------------------------------------------------------------|
| 402-000-2000-000 | D-cell battery                                                          |
| 402-000-7000-000 | 230 VAC supply module                                                   |
| 402-000-8000-000 | 24 VAC supply module                                                    |
| 66-99-097        | USB-cable with galvanic separation                                      |
| 66-99-099        | Infrared optical reading head w/USB plug                                |
| 66-99-102        | Infrared optical reading head RS232 w/D-sub 9F                          |
| 66-99-106        | Data cable RS232, D-sub 9F                                              |
| 66-99-108        | PC-Interface cable RS232, for MULTICAL®                                 |
| 66-99-372        | Pt500 (Heat) Verification unit for MC402 (to be used with METERTOOL)    |
| 66-99-373        | Pt500 (Cooling) Verification unit for MC402 (to be used with METERTOOL) |
| 66-99-724        | METERTOOL for HCW                                                       |
| 66-99-713        | METERTOOL LogView for MULTICAL <sup>®</sup> 402                         |

#### Glands including gaskets (PN16)

Material: Copper alloy brass, CW617N (nipple). Copper alloy brass, CW602N (coupling)

|      |                   | Glands            |          |          |
|------|-------------------|-------------------|----------|----------|
| Size | Nipple            | Union             | Type no. | 2 nos.   |
| DN15 | R1/2              | G <sup>3</sup> /4 | -        | 6561-323 |
| DN20 | R <sup>3</sup> /4 | G1                | -        | 6561-324 |
| DN25 | R1                | G5/4              | 6561-325 |          |
| DN40 | R11/2             | G2                | 6561-315 |          |

Material: Reinz AFM30

Material: Reinz AFM34

| Gaskets for<br>glands |          |  |  |  |  |  |  |  |
|-----------------------|----------|--|--|--|--|--|--|--|
| Size (union) Type no. |          |  |  |  |  |  |  |  |
| G3⁄4                  | 2210-061 |  |  |  |  |  |  |  |
| G1                    | 2210-062 |  |  |  |  |  |  |  |
| G5/4                  | 2210-063 |  |  |  |  |  |  |  |
| G2                    | 2210-065 |  |  |  |  |  |  |  |

| Gaskets for        |          |  |  |  |  |  |  |  |
|--------------------|----------|--|--|--|--|--|--|--|
| flange meters PN25 |          |  |  |  |  |  |  |  |
| Size               | Type no. |  |  |  |  |  |  |  |
| DN20               | 2210-147 |  |  |  |  |  |  |  |
| DN25               | 2210-133 |  |  |  |  |  |  |  |
| DN40               | 2210-132 |  |  |  |  |  |  |  |
| DN50               | 2210-099 |  |  |  |  |  |  |  |

Contact Kamstrup A/S about further accessories.

### 3.3 PROG, A-B-CCC

The meter's legal parameters are determined by the Prog, which cannot be changed without breaking the verification seal. This means that the change must be made by an accredited laboratory.

**The A-code** indicates whether the flow sensor is mounted in forward or return pipe. As the density and specific heat capacity of water increases with temperature, the calculator must correct for the installation type in question.

Wrong programming or installation will result in measuring errors. Further details concerning installation of flow sensor in flow or return for heat and cooling meters appear from paragraph 6.6.

**The B-code** indicates the measuring unit used in the energy register. GJ, kWh or MWh are the most frequently used units, whereas Gcal are only used in a few countries outside the EEA.

**The CCC-code** optimizes the display resolution for the selected flow sensor size at the same time as the type approval regulations as to minimum resolution and maximum register overflow are obeyed. The CCC-codes are divided into two tables for standard resolution and high resolution respectively.

| Prog. number                                                                  | <b>A</b> | - | B                | - |     |
|-------------------------------------------------------------------------------|----------|---|------------------|---|-----|
| Flow sensor position:<br>k-factor - Forward (at T1)<br>table - Return (at T2) | 3<br>4   |   |                  |   |     |
| <b>Measuring unit, Energy</b><br>- GJ<br>- kWh<br>- MWh<br>- Gcal             |          |   | 2<br>3<br>4<br>5 |   |     |
| Flow sensor coding<br>(CCC-table)                                             |          |   |                  |   | ССС |

#### 3.3.1 Standard CCC-codes

|         | CCC-table for MULTICAL <sup>®</sup> 402 |             |    |    |     |      |    |              |                                   |  |  |  |
|---------|-----------------------------------------|-------------|----|----|-----|------|----|--------------|-----------------------------------|--|--|--|
|         |                                         |             |    |    |     |      |    |              |                                   |  |  |  |
| CCC No. | kWh                                     | MWh<br>Gcal | GJ | m³ | l/h | m³/h | kW | qp<br>[m³/h] | Туре<br>402-хххх-хх <u>Х</u> -ххх |  |  |  |
| 416     | 0                                       | 3           | 2  | 2  | 0   | -    | 1  | 0.6          | 1-3                               |  |  |  |
| 419     | 0                                       | 3           | 2  | 2  | 0   | -    | 1  | 1.5          | 4-5-7-9                           |  |  |  |
| 498     | 0                                       | 3           | 2  | 2  | 0   | -    | 1  | 2.5          | A-B                               |  |  |  |
| 451     | -                                       | 2           | 1  | 1  | 0   | -    | 1  | 3.5          | D                                 |  |  |  |
| 437     | -                                       | 2           | 1  | 1  | 0   | -    | 1  | 6.0          | F-G                               |  |  |  |
| 478     | -                                       | 2           | 1  | 1  | 0   | -    | 1  | 10           | H-J                               |  |  |  |
| 420     | -                                       | 2           | 1  | 1  | 0   | -    | 1  | 15           | К                                 |  |  |  |
| 490     | -                                       | 1           | 0  | 0  | 0   | -    | 1  | 15           | К                                 |  |  |  |

#### 3.3.2 CCC-codes with high resolution

|         | CCC-table for MULTICAL <sup>®</sup> 402 |             |    |    |     |      |    |              |                                   |  |  |
|---------|-----------------------------------------|-------------|----|----|-----|------|----|--------------|-----------------------------------|--|--|
|         |                                         |             |    |    |     |      |    |              |                                   |  |  |
| CCC No. | kWh                                     | MWh<br>Gcal | GJ | m³ | l/h | m³/h | kW | qp<br>[m³/h] | Type<br>402-xxxx-xx <u>X</u> -xxx |  |  |
| 484     | 1                                       | -           | 3  | 3  | 0   | -    | 1  | 0.6          | 1-3                               |  |  |
| 407     | 1                                       | -           | 3  | 3  | 0   | -    | 1  | 1.5          | 4-5-7-9                           |  |  |
| 455     | 1                                       | -           | 3  | 2  | 0   | -    | 1  | 1,5          | 4-5-6-7-8-9                       |  |  |
| 454     | 1                                       | -           | 3  | 3  | 0   | -    | 1  | 2.5          | A-B                               |  |  |
| 459     | 1                                       | -           | 3  | 2  | 0   | -    | 1  | 2,5          | A-B                               |  |  |
| 436     | 0                                       | 3           | 2  | 2  | 0   | -    | 1  | 3.5          | D                                 |  |  |
| 438     | 0                                       | 3           | 2  | 2  | 0   | -    | 1  | 6.0          | F-G                               |  |  |
| 483     | 0                                       | 3           | 2  | 2  | 0   | -    | 1  | 10           | H-J                               |  |  |
| 485     | 0                                       | 3           | 2  | 2  | 0   | -    | 1  | 15           | К                                 |  |  |

The use of CCC-codes with high resolution reduces the battery lifetime if you choose modules with pulse outputs.

### 3.4 Display coding

Display code "DDD" indicates the active readings of each meter type. "1" is the first primary reading, whereas e.g. "1A" is the first secondary reading. The display automatically returns to reading "1" after 4 minutes.

|      | $\bigcirc$                                        |      |                       | Date Stamp | Heat meter<br>DDD=210 | Heat meter<br>DDD=410 | Cooling meter<br>DDD=510 | Heat/cooling<br>DDD=610 | Volume/Heat<br>DDD=710 | Volume/Cool<br>DDD=810 | Energy meter<br>DDD=910 |
|------|---------------------------------------------------|------|-----------------------|------------|-----------------------|-----------------------|--------------------------|-------------------------|------------------------|------------------------|-------------------------|
| 1.0  | Heat energy (E1)                                  |      |                       |            | 1                     | 1                     |                          | 1                       |                        |                        | 1                       |
|      |                                                   | 1.1  | Yearly data           | •          | 1A                    | 1A                    |                          | 1A                      |                        |                        |                         |
|      |                                                   | 1.2  | Monthly data          | ٠          | 1B                    | 1B                    |                          | 1B                      |                        |                        | 1A                      |
| 2.0  | Cooling energy (E3)                               |      |                       |            |                       |                       | 1                        | 2                       |                        |                        |                         |
|      |                                                   | 2.1  | Yearly data           | ٠          |                       |                       | 1A<br>18                 | 2A                      |                        |                        |                         |
| 2.PM | High-resolution energy (verification              | 2.2  | Monthly data          | •          | 1PM                   | 1PM                   | 1B<br>1PM                | 2B<br>1PM               |                        |                        |                         |
| 2    | mode only)                                        |      |                       |            | 1                     | 11.00                 | 11 /11                   | 1                       |                        |                        |                         |
| 3.X  | Other energy types                                |      |                       |            |                       |                       |                          |                         |                        |                        |                         |
|      |                                                   | 3.6  | E8 (m3*tf)            |            | 2                     | 2                     |                          |                         |                        |                        |                         |
| 4.0  | Volumo V1                                         | 3.7  | E9 (m3^tr)            |            | 2A<br>3               | 2A<br>2               | 2                        | 2                       | 1                      | 1                      | 2                       |
| 4.0  | Volume V1                                         | 41   | Vearly data           |            | 3 <u>0</u>            | 3 <u>4</u>            | 2<br>24                  | 3 <u>4</u>              | 14                     | 14                     | 2                       |
|      |                                                   | 4.1  | Monthly data          |            | 3B                    | 3B                    | 2/1<br>2B                | 3B                      | 1 <i>R</i>             | 1 <i>R</i>             | 2A                      |
| 4.PM | Volume - High-resolution (verification mode only) | -1.2 | montiny data          |            | 3PM                   | 3PM                   | 2PM                      | 3PM                     | 10                     | 10                     | 271                     |
| 6.0  | Hour counter                                      |      |                       |            | 4                     | 4                     | 3                        | 4                       | 2                      | 2                      | 3                       |
| 7.0  | T1 (Flow)                                         |      |                       |            | 5                     | 5                     | 4                        | 5                       |                        |                        | 4                       |
|      |                                                   | 7.1  | Year-to-date average  |            | 5A                    | 5A                    | 4A                       | 5A                      |                        |                        |                         |
|      |                                                   | 7.2  | Month-to-date average |            | 5B                    | 5B                    | 4B                       | 5B                      |                        |                        |                         |
| 8.0  | T2 (Return)                                       |      |                       |            | 6                     | 6                     | 5                        | 6                       |                        |                        | 5                       |
|      |                                                   | 8.1  | Year-to-date average  |            | 6A                    | 6A                    | 5A                       | 6A                      |                        |                        |                         |
| 0.0  | T1 T2 (At) = cooling                              | 8.2  | Month-to-date average |            | 0B<br>7               | 0B<br>7               | 5B<br>6                  | 0B<br>7                 |                        |                        | 6                       |
| 7.0  |                                                   |      |                       |            | ,                     | ,                     | U                        | ,                       |                        |                        | 0                       |
|      |                                                   |      |                       |            |                       |                       |                          |                         |                        |                        |                         |
| 12.0 | Flow (V1)                                         |      |                       |            | 8                     | 8                     | 7                        | 8                       | 3                      | 3                      | 7                       |
|      |                                                   | 12.1 | This year's max.      | •          | 8A                    | 8A                    | 7A                       | 8A                      | 3A                     | 3A                     |                         |
|      |                                                   | 12.2 | Max. yearly data      | •          |                       |                       |                          |                         |                        |                        |                         |
|      |                                                   | 12.3 | This year's min.      | •          |                       |                       |                          |                         |                        |                        |                         |
|      |                                                   | 12.4 | Min. yearly data      | •          |                       |                       |                          |                         |                        |                        |                         |
|      |                                                   | 12.5 | Inis month's max.     | •          | 00                    | 0.0                   | 70                       | 0.0                     | 20                     | 20                     | 74                      |
|      |                                                   | 12.0 | Max. monthis adia     | •          | 88                    | 8B                    | 7B                       | 88                      | 38                     | 38                     | 7A                      |
|      |                                                   | 12.7 | Min monthly data      | •          | 80                    | 80                    | 70                       | 80                      | 30                     | 30                     | 7R                      |
|      |                                                   | 12.0 |                       | -          | 00                    | 00                    | 70                       | 00                      | JC                     | JC                     | 70                      |
| 14.0 | Power (V1)                                        |      |                       |            | 9                     | 9                     | 8                        | 9                       |                        |                        | 8                       |
|      |                                                   | 14.1 | This year's max.      | •          | 9A                    | 9A                    | 8A                       | 9A                      |                        |                        |                         |
|      |                                                   | 14.2 | Max. yearly data      | •          |                       |                       |                          |                         |                        |                        |                         |
|      |                                                   | 14.3 | This year's min.      | •          |                       |                       |                          |                         |                        |                        |                         |
|      |                                                   | 14.4 | Min. yearly data      | •          |                       |                       |                          |                         |                        |                        |                         |
|      |                                                   | 14.5 | This month's max.     | •          |                       |                       |                          |                         |                        |                        |                         |
|      |                                                   | 14.6 | Max. monthly data     | •          | 9B                    | 9B                    | 8B                       | 9B                      |                        |                        |                         |
|      |                                                   | 14.7 | This month's min.     | •          |                       |                       |                          |                         |                        |                        |                         |
|      |                                                   | 14.8 | Min. monthly data     | •          | 9C                    | 9C                    | 8C                       | 9C                      |                        |                        |                         |

|       | $\bigcirc$                       |          |                           |           | Date Stamp | Heat meter<br>DDD=210 | Heat meter<br>DDD=410 | Cooling meter<br>DDD=510 | Heat/cooling<br>DDD=610 | Volume/Heat<br>DDD=710 | Volume/Cool<br>DDD=810 | Energy meter<br>DDD=910 |
|-------|----------------------------------|----------|---------------------------|-----------|------------|-----------------------|-----------------------|--------------------------|-------------------------|------------------------|------------------------|-------------------------|
| 15.0  | VA (Input A)                     |          |                           |           | 1          | 10                    | 10                    | 0                        | 10                      | 4                      | 4                      | 0                       |
| 15.0  |                                  | 15 1     | Meter No. VA              |           |            | 104                   | 104                   | <b>9</b><br>ΟΔ           | 104                     | <b>4</b><br>//Δ        | - <del>4</del><br>//Δ  | 9<br>QA                 |
|       |                                  | 15.2     | Yearly data               |           |            | 10A<br>10B            | 10A<br>10B            | 9R                       | 10A                     | 4/A<br>//B             | 4A<br>4B               | 9R                      |
|       |                                  | 15.3     | Monthly data              |           |            | 100                   | 100                   | 90                       | 100                     | 40                     | 40                     | 90                      |
| 16.0  | VB (Input B)                     | 19.9     | monting add               |           | -          | 100                   | 100                   | 10                       | 11                      | 5                      | 5                      | 10                      |
| 10.0  |                                  | 16.1     | Meter No. VB              |           |            | 11A                   | 11A                   | 10A                      | 11A                     | 5A                     | 5A                     | 10A                     |
|       |                                  | 16.2     | Yearly data               |           | •          | 11B                   | 11B                   | 10B                      | 11B                     | 5B                     | 5B                     | 10B                     |
|       |                                  | 16.3     | Monthly data              |           | •          | 11C                   | 11C                   | 10C                      | 11C                     | 5C                     | 5C                     | 10C                     |
| 17.0  | TA2                              |          |                           |           | -          | 12                    | 12                    |                          | 12                      |                        |                        |                         |
|       |                                  | 17.1     | TL2                       |           |            | 12A                   | 12A                   |                          |                         |                        |                        |                         |
| 18.0  | TA3                              |          |                           |           |            | 13                    | 13                    |                          | 13                      |                        |                        |                         |
|       |                                  | 18.1     | TL3                       |           |            | 13A                   | 13A                   |                          |                         |                        |                        |                         |
| 19.0  | Info Code                        |          |                           |           |            | 14                    | 14                    | 11                       | 14                      | 6                      | 6                      | 11                      |
|       |                                  | 19.1     | Info event counter        |           |            | 14A                   | 14A                   | 11A                      | 14A                     | 6A                     | 6A                     | 11A                     |
|       |                                  | 19.2     | Info logger (36 latest ev | ents)     | •          | 14B                   | 14B                   | 11B                      | 14B                     | 6B                     | 6B                     | 11B                     |
| 20.0  | Customer number (N° 1+2)         |          |                           |           |            | 15                    | 15                    | 12                       | 15                      | 7                      | 7                      | 12                      |
|       |                                  | 20.1     | Date                      |           |            | 15A                   | 15A                   | 12A                      | 15A                     | 7A                     | 7A                     | 12A                     |
|       |                                  | 20.2     | Hour                      |           |            | 15B                   | 15B                   | 12B                      | 15B                     | 7B                     | 7B                     | 12B                     |
|       |                                  | 20.3     | Target date               |           |            | 15C                   | 15C                   | 12C                      | 15C                     | 7C                     | 7C                     | 12C                     |
|       |                                  | 20.4     | Serial no.                | (Nº 3)    |            | 15D                   | 15D                   | 12D                      | 15D                     | 7D                     | 7D                     | 12D                     |
|       |                                  | 20.5     | Prog. (A-B-CCC)           | (N° 4)    |            | 15E                   | 15E                   | 12E                      | 15E                     | 7E                     | 7E                     | 12E                     |
|       |                                  | 20.6     | Config 1 (DDD-EE)         | (N° 5)    |            | 15F                   | 15F                   | 12F                      | 15F                     | 7F                     | 7F                     | 12F                     |
|       |                                  | 20.7     | Config 2 (FF-GG-N-PP)     | (Nº 6)    |            | 15G                   | 15G                   | 12G                      | 15G                     | 7G                     | 7G                     | 12G                     |
|       |                                  | 20.8     | Software edition          | (Nº 10)   |            | 15H                   | 15H                   | 12H                      | 15H                     | 7H                     | 7H                     | 12H                     |
|       |                                  | 20.9     | Software check sum        | (Nº 11)   |            | 151                   | 151                   | 121                      | 151                     | 71                     | 71                     | 121                     |
|       |                                  | 20.10    | Segment test              | (110 a c) |            | 15J                   | 15J                   | 12J                      | 15J                     | <i>7</i> J             | 7J                     | 12J                     |
|       |                                  | 20.15    | M-Bus primary adr.        | (N° 31)   |            | 15K                   | 15K                   | 12K                      | 15K                     | 7K                     | 7K                     | 12K                     |
|       |                                  | 20.16    | M-Bus secondary adr.      | (Nº 32)   |            | 15L                   | 15L                   | 12L                      | 15L                     | 7L                     | 7L                     | 12L                     |
| N/ 1  |                                  | -)       |                           |           | 1          | 2                     |                       | 2                        |                         | 2                      |                        |                         |
| Numbe | er of yearly data displayed (115 | <u>リ</u> |                           |           |            | 2                     | 2                     | 2                        | 2                       | 2                      | 2                      | 2                       |
| Numbe | er of monthly data displayed (1  | 36)      |                           |           | 1          | 12                    | 12                    | 12                       | 12                      | 12                     | 12                     | 12                      |

DDD=210 is the "standard code" of heat meters with meter type 402xxxxxx2xx. Please contact Kamstrup for other combinations. A DDD-code can contain max. 103 readings including 4 data logger counts.

A total survey of existing display codes (DDD) appear from a separate document.

Please contact Kamstrup for further details.

PM are indications which only appear in verification mode.

Note: Data reading can collect up to 36 monthly data and up to 15 yearly data. The number of displayed yearly and monthly data is determined by the DDD-code.

#### 3.4.1 **Energy overview**

The above-mentioned energy types E1, E3, E8 and E9 are calculated as follows:

| Formula                | Example of application                                      | Condition                                                                    |                        |
|------------------------|-------------------------------------------------------------|------------------------------------------------------------------------------|------------------------|
| E1=V1(T1-T2)           | Heat energy (V1 in flow or return)<br>T1 > T2               | T1 > $\theta_{hc}$ (Forward temperature must be higher than the limit value) | Legal Display/Data/Log |
| E3=V1(T2-T1)           | Cooling energy (V1 in flow or return)<br>T2 > T1            | T1 > $\theta_{hc}$ (Forward temperature must be lower than the limit value)  | Legal Display/Data/Log |
| E8=m <sup>3</sup> x T1 | Used for calculation of average temperature of forward pipe | None                                                                         | Display/Data/Log       |
| E9=m <sup>3</sup> x T2 | Used for calculation of average temperature of return pipe  | None                                                                         | Display/Data/Log       |

 $\theta_{bc}$  is the temperature, at which the meter shifts between heat and cooling measurement. The typical value is 25°C, but other values can be supplied as required.

If  $\theta_{hc}$  is set at 180°C the function is disconnected, e.g. to be used for "purchase/sales" of heat. See paragraph 7.4 for further information on heat/cooling meters.

### 3.5 >EE< Configuration of MULTITARIFF

 $MULTICAL^{\circ}$  402 has 2 extra registers, TA2 and TA3, which can accumulate energy E1 or E3 (E=20 accumulates volume) parallel with the main register based on the limits programmed into tariff limits TL2 and TL3.

Example: EE=11 (Power tariff)

TA2 shows energy consumed...

5 ▲ <u>3</u> 10,<u>4</u> <u>3</u> 10,<u>7</u> <u>3</u> 10,<u>7</u> <u>3</u> 10,<u>7</u> <u>4</u> <u>8</u> 10,<u>7</u> <u>10</u> <u>1</u> ...above the power limit TL2



| EE= | TARIFF TYPE                                              | FUNCTION                                                                                                                                                                                                                   | Country code 2xx | Country code 3xx | Country code 5xx | Country code 6xx | Country code 7xx | Country code 8xx | Country code 9xx |
|-----|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------|------------------|------------------|------------------|------------------|------------------|
| 00  | No active tariff                                         | No function                                                                                                                                                                                                                |                  |                  |                  |                  |                  |                  |                  |
| 11  | Power tariff                                             | Energy is accumulated in TA2 and TA3 on the basis of the power limits entered in TL2 and TL3                                                                                                                               | •                | •                | •                |                  |                  |                  |                  |
| 12  | Flow tariff                                              | Energy is accumulated in TA2 and TA3 on the basis of the flow limits entered in TL2 and TL3                                                                                                                                | ٠                | ٠                | ٠                |                  |                  |                  |                  |
| 13  | Cooling tariff                                           | Energy is accumulated in TA2 and TA3 on the basis of the $\Delta t$ limits entered in TL2 and TL3                                                                                                                          | ٠                | ٠                | ٠                |                  |                  |                  |                  |
| 14  | Flow temperature tariff                                  | Energy is accumulated in TA2 and TA3 on the basis of the tF limits entered in TL2 and TL3                                                                                                                                  | •                | •                | •                |                  |                  |                  |                  |
| 15  | Return temperature tariff                                | Energy is accumulated in TA2 and TA3 on the basis of the tR limits entered in TL2 and TL3                                                                                                                                  | •                | •                | •                |                  |                  |                  |                  |
| 19  | Time controlled tariff                                   | TL2=Start time for TA2<br>TL3=Start time for TA3                                                                                                                                                                           | •                | •                | •                |                  |                  |                  |                  |
| 20  | Heat/cooling volume tariff<br>(TL2 and TL3 are not used) | Volume (V1) is divided into TA2 for heat (T1>T2) and TA3 for cooling (T1 <t2). (recommended="" applications)<="" cooling="" for="" heat="" td=""><td></td><td></td><td></td><td>•</td><td>•</td><td>•</td><td></td></t2).> |                  |                  |                  | •                | •                | •                |                  |
| 21  | PQ-tariff                                                | If P>TL2 energy is saved in TA2 and if Q>TL3 energy is saved in TA3                                                                                                                                                        | •                | ٠                | ٠                |                  |                  |                  |                  |

See paragraph 7.9 for further details on the tariff registers.

### 3.6 >FF< Input A (VA), pulse division, >GG< Input B (VB), pulse division

MULTICAL<sup>®</sup> 402 has 2 extra pulse inputs, VA and VB, which are placed on the modules (see paragraph 11.3 for further details).

| Туре 402- 🛛                                                        |    |
|--------------------------------------------------------------------|----|
| Modules                                                            |    |
| Data + 2 pulse inputs (VA, VB)                                     | 10 |
| M-Bus + 2 pulse inputs (VA, VB)                                    | 20 |
| Wireless M-Bus, EU, 868 MHz, Mode T1 OMS (Ind. Key)                | 31 |
| Wireless M-Bus, EU, 868 MHz, Mode C1 (Ind. Key) Alt. Reg . +VA, VB | 35 |
| Wireless M-Bus, EU, 868 MHz, Mode T1 (Common Key)                  | 37 |
| Wireless M-Bus, C1, Fixed Network, (Ind. Key)                      | 38 |
| Radio, EU, 434 MHz, Int.+Ext. Ant., NET0 + 2 pulse inputs (VA, VB) | 42 |
| Radio, EU, 434 MHz, Int.+Ext. Ant., NET1 + 2 pulse inputs (VA, VB) | 44 |
| Radio, SE, 444 MHz, Int. Ant., NET0 + 2 pulse inputs (VA, VB)      | 50 |
| Radio, SE, 444 MHz, Int. Ant., NET1 + 2 pulse inputs (VA, VB)      | 52 |
| Radio, SE, 444 MHz, Ext. Ant., NET0 + 2 pulse inputs (VA, VB)      | 54 |
| Radio, SE, 444 MHz, Ext. Ant., NET1 + 2 pulse inputs (VA, VB)      | 56 |

Reconfiguration between pulse inputs and pulse outputs is not necessary with MULTICAL<sup>®</sup> 402. When a module with pulse inputs is mounted in MULTICAL<sup>®</sup> 402, the meter is automatically configured for pulse inputs.

The inputs are configured via the FF and GG codes as shown in the table below. In the absence of other information from the customer the inputs will be configured as FF=24 and GG=24. After delivery the FF and GG codes can be changed by means of the PC program METERTOOL (see paragraph 14).

| Inpւ<br>Inpւ | ıt A (65-66)<br>ıt B (67-68) |   |                      |      |            |       |                              |
|--------------|------------------------------|---|----------------------|------|------------|-------|------------------------------|
| FF/GG        | Max. Input<br>0.5 Hz         |   | Max. Input<br>0.5 Hz |      | Precounter | l/imp | Position of<br>decimal point |
| 01           | 50 m³/h                      |   | 1                    | 100  | 000000.0   |       |                              |
| 02           | 25 m³/h                      |   | 2                    | 50   | 000000.0   |       |                              |
| 03           | 12 m³/h                      |   | 4                    | 25   | 000000.0   |       |                              |
| 04           | 5 m³/h                       |   | 10                   | 10   | 000000.0   |       |                              |
| 05           | 2.5 m³/h                     |   | 20                   | 5.0  | 000000.0   |       |                              |
| 06           | 1 m³/h                       |   | 40                   | 2.5  | 000000.0   |       |                              |
| 07           | 0.5 m³/h                     |   | 100                  | 1.0  | 000000.0   |       |                              |
|              | _                            | - |                      | -    | _          |       |                              |
| 24           | 5 m³/h                       |   | 1                    | 10   | 00000.00   |       |                              |
| 25           | 2.5 m³/h                     |   | 2                    | 5.0  | 00000.00   |       |                              |
| 26           | 1 m³/h                       |   | 4                    | 2.5  | 00000.00   |       |                              |
| 27           | 0.5 m³/h                     |   | 10                   | 1.0  | 00000.00   |       |                              |
|              |                              | - | h                    | ł    | i          |       |                              |
| 40           | 500 m³/h                     |   | 1                    | 1000 | 0000000    |       |                              |

Pulse durations: Min. 1 s. for Reed-switches and min. 30 ms. for electronic pulse outputs.

#### 3.6.1 Pulse inputs VA and VB

MULTICAL<sup>®</sup> 402 has two extra pulse inputs, VA and VB, for collection and remote totalization of pulses from e.g. mechanical water meters. The pulse inputs are physically placed on the modules, e.g. the "data/pulse input module", which can be mounted in the module base, but accumulation and data logging of values is carried out by the calculator.

Pulse inputs VA and VB function independently of the meter itself. Therefore their values are not included in any kind of energy calculation.



The two pulse inputs are identically constructed and can be individually set up to receive pulses from water meters of max. 0.5 Hz.

Correct pulse value has been configured from the factory on the basis of order information, or is configured by means of METERTOOL. See paragraph 3.6 concerning configuration of VA (FF-codes) and VB (GG-codes).

MULTICAL<sup>®</sup> 402 registers the accumulated consumption of the meters connected to VA and VB and saves the counter values every month and every year on target date. In order to facilitate identification during data reading it is also possible to save the meter numbers of the two meters connected to VA and VB. Programming via METERTOOL or via the front keys.

The registration, which can both be read from the display (selecting a suitable DDD-code) and via data communication, includes the following as well as date indication of yearly and monthly data:

| Type of registration:                | Counter value | Identification | Yearly data | Monthly data |
|--------------------------------------|---------------|----------------|-------------|--------------|
| VA (accumulated register)            | •             |                |             |              |
| Meter number VA                      |               | •              |             |              |
| Yearly data, up to latest 15 years   |               |                | •           |              |
| Monthly data, up to latest 36 months |               |                |             | •            |
| VB (accumulated register)            | •             |                |             |              |
| Meter number VB                      |               | ٠              |             |              |
| Yearly data, up to latest 15 years   |               |                | •           |              |
| Monthly data, up to latest 36 months |               |                |             | •            |

By means of METERTOOL counter values VA and VB can be preset to the values of the connected meters at the time of commissioning.

#### 3.6.2 Display example, VA

In the example below VA has been configured to FF=24, which matches 10 litres/pulse and a max. flow of 5 m<sup>3</sup>/h. The meter connected to VA has meter no. 75420145 which has been saved in the internal memory of MULTICAL<sup>®</sup> 402 by means of METERTOOL.



### 3.7 >PP< Output C and Output D

Pulse outputs for energy (CE) and volume (CV) are available on the following modules (see paragraph 11.1 for further information on connection):

|                                                      | Туре       | 402-  |    |
|------------------------------------------------------|------------|-------|----|
| Data + 2 pulse outputs (CE, CV)                      |            |       | 11 |
| M-Bus + 2 pulse outputs (CE, CV)                     |            |       | 21 |
| Radio, EU, 434 MHz, Int.+Ext. Ant., NET0 + 2 pulse o | utputs (CE | , CV) | 43 |
| Radio, EU, 434 MHz, Int.+Ext. Ant., NET1 + 2 pulse o | utputs (CE | , CV) | 45 |

Reconfiguration between pulse inputs and pulse outputs is not necessary with MULTICAL<sup>®</sup> 402. When a module with pulse outputs is mounted in MULTICAL<sup>®</sup> 402, the meter is automatically configured for pulse outputs. Pulse durations of 1 ms, 32 ms. or 0.1 s. are available when ordering. After delivery the pulse duration can be changed by means of the PC program METERTOOL (see paragraph 14)

|    | Output C<br>(CE) Terminal 16-17<br>Output D<br>(CV) Terminal 18-19 |                                                                                                        |
|----|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| PP | Pulse duration                                                     |                                                                                                        |
| 94 | 1 ms.                                                              |                                                                                                        |
| 95 | 32 ms.                                                             | PP=95 is default on delivery                                                                           |
| 96 | 0.1 s.                                                             | Pulse duration 0.1 s. reduces the battery lifetime.<br>Please contact Kamstrup for further information |

### 3.8 Configuration during set up of country code

The two last characters of the type number, called the country code, are used to set up the language of the label text e.g. "meter in return", class 2 or 3, indication of approval and verification mark, as well as whether the meter is to be supplied with fast/slow integration speed, and if info codes are to be deleted automatically when the error disappears.

|              | Туре | 402- |  |  |  |    |
|--------------|------|------|--|--|--|----|
| Country code |      |      |  |  |  | ХХ |

Please contact Kamstrup for further details on available country codes. The available country codes appear from internal document 5514-169 on Kamstrup's Intranet.

#### 3.8.1 Integration time and reset type of info codes

Unless otherwise stated in the order the default configuration of MULTICAL<sup>®</sup> 402 will include integration (energy calculation) every 24 seconds as well as automatic reset of info codes when the error disappears.



#### 3.8.2 Configuration data

During the production of MULTICAL<sup>®</sup> 402 values must be entered in the below-mentioned fields. Unless otherwise specified in the order, MULTICAL<sup>®</sup> 402 will be supplied with the below-mentioned "Automatic" and "Default" data.

|                                      | Automatic                         | To be stated when ordering   | Default               |
|--------------------------------------|-----------------------------------|------------------------------|-----------------------|
| Serial no. (S/N) as well as          | 60.000.000/2010                   | -                            | -                     |
| Customer No.                         | -                                 | Up to 16 digits              | Customer number = S/N |
| Display No. 1 = 8 digits MSD         |                                   | Limited to 11 digits in BOS  |                       |
| Display No. 2 = 8 digits LSD         |                                   | dep. on PCBase compatibility |                       |
| Target date                          | -                                 | MM=1-12 and DD=1-28          | Dep. on country code  |
| TL2                                  | -                                 | 5 digits                     | 0                     |
| TL3                                  | -                                 | 5 digits                     | 0                     |
| Average peak time                    | -                                 | 11440 min.                   | 60 min.               |
| $\theta_{hc}$ Heat/cooling switching | -                                 | 0.01160.00°C *)              | 25.00°C               |
|                                      |                                   |                              |                       |
| Date/time                            | YYYY.MM.DD/hh.mm.ss               | $GMT \pm 12.0$ hours         | -                     |
|                                      | GMT+offset acc.to country<br>code | (30 min. in leaps)           |                       |

\*)  $\theta_{hc}$  = 180.00 °C switches off the function so that the meter can be used for "purchase/sales" of heat

*S/N* 60.000.000 to 62.499.999 have been reserved for MC402.

#### 3.8.3 Customer label

In the top left corner of the type label an area of 15 x 38 mm has been reserved for customer labels (see paragraph 3.1), which can include e.g. the logo of a utility, a bar code etc. Unless otherwise specified in the order,  $MULTICAL^{\odot}$  402 will be supplied with customer label no. 2001-000, which includes the meter's customer number.

Please contact Kamstrup for the creation of new customer labels.

#### 3.8.4 Other functions

Creating an order in BOS you can choose "fixed M-Bus addr" which means that all meters included in the ordre in question will be given the same M-Bus address.

#### 3.8.5 Internal configuration survey

See instructions no. 5508-739 concerning update of programming and configuration.





Figure 2: Mechanical dimensions of electronics unit





Figure 3: Flow sensor with G<sup>3</sup>/<sub>4</sub> and G1 thread connection

| Thread                  | L   | M   | H2 | A    | B1   | B2 | H1   | Approx.<br>weight<br>[kgs.] |
|-------------------------|-----|-----|----|------|------|----|------|-----------------------------|
| G3⁄4                    | 110 | L/2 | 89 | 10.5 | 50.5 | 35 | 48.5 | 1.4                         |
| G1 (q <sub>p</sub> 1.5) | 130 | L/2 | 89 | 20.5 | 50.5 | 35 | 48.5 | 1.5                         |
| G1 (q <sub>p</sub> 3.0) | 130 | L/2 | 89 | 20.5 | 50.5 | 35 | 48.5 | 1.4                         |
| G3⁄4                    | 165 | L/2 | 89 | 20.5 | 50.5 | 35 | 48.5 | 1.8                         |
| G1 (q <sub>p</sub> 1.5) | 190 | L/2 | 89 | 20.5 | 50.5 | 35 | 48.5 | 2.0                         |
| G1 (q <sub>p</sub> 3.0) | 190 | L/2 | 89 | 20.5 | 50.5 | 35 | 48.5 | 1.9                         |

Table 2: Weight is inclusive of 3 m short direct sensor set, but exclusive of packing



Figure 4: Flow sensor with G5/4 and G2 threaded connection

| Thread | L   | Μ   | H2   | A  | B1   | B2 | H1   | Approx.<br>weight<br>[kgs.] |
|--------|-----|-----|------|----|------|----|------|-----------------------------|
| G5/4   | 260 | L/2 | 88.7 | 17 | 50.5 | 22 | 48.5 | 2.9                         |
| G2     | 300 | L/2 | 88.7 | 21 | 50.5 | 31 | 48.5 | 5.1                         |

Table 3: Weight is inclusive of 3 m sensor set, but exclusive of packing



Figure 5: Flow sensor with DN25 to DN50 flange connection

| Nom.     |     |     |      |     |     |     |          |        | Approx.<br>weight |        |
|----------|-----|-----|------|-----|-----|-----|----------|--------|-------------------|--------|
| diameter | L   | м   | H2   | D   | Н   | k   | Quantity | Thread | d2                | [kgs.] |
| DN25     | 260 | L/2 | 92.5 | 115 | 106 | 85  | 4        | M12    | 14                | 5.6    |
| DN40     | 300 | L/2 | 92.5 | 150 | 136 | 110 | 4        | M16    | 18                | 8.9    |
| DN50     | 270 | 155 | 92.5 | 165 | 145 | 125 | 4        | M16    | 18                | 10.7   |

Table 4: Weight is inclusive of 3 m sensor set, but exclusive of packing

## **5** Pressure loss

Pressure loss in a flow sensor is stated as max. pressure loss at  $q_p$ . According to EN 1434 max. pressure loss must not exceed 0.25 bar, unless the energy meter includes a flow controller or functions as pressure reducing equipment.

The pressure loss in a sensor increases with the square of the flow and can be stated as:

$$Q = kv \times \sqrt{\Delta p}$$

where:

Q = volume flow rate [m<sup>3</sup>/h]

kv = volume flow rate at 1 bar pressure loss [m<sup>3</sup>/h]

 $\Delta p = pressure loss [bar]$ 

| Graphs | qp<br>[m³/h]  | Nom. diameter<br>[mm] | kv   | Q@0.25 bar<br>[m³/h] |
|--------|---------------|-----------------------|------|----------------------|
| А      | 0.6 & 1.5     | DN15DN20              | 3    | 1.5                  |
| В      | 2.5 & 3.5 & 6 | DN20 & DN25           | 13.5 | 6.8                  |
| С      | 10 & 15       | DN40 & DN50           | 43   | 21.7                 |

Table 5: Pressure loss table



*Diagram 2: Pressure loss graphs* 

## 6 Installation phase

### 6.1 Installation requirements

Prior to installation of MULTICAL<sup>®</sup> 402 the heating system should be flushed while a fitting piece replaces the meter. Remove the adhesive wafers from the meter's inlet and outlet and mount the flow sensor with glands/flanges. New fibre gaskets in original quality must be used.

If other glands than the original ones from Kamstrup A/S are used you must make sure that the threaded lengths of the glands do not prevent proper tightening of the sealing surface.

Correct placing of the flow sensor in flow or return appears from the type label on the front of the electronics unit and the flow direction is indicated by an arrow on the flow sensor.

In order to prevent cavitation the operating pressure at the flow sensor must be min. 1.5 bar at qp and min. 2.5 bar at qs. This applies to temperatures up to approx. 80°C. See paragraph 6.5 for further details on operating pressure.

When the installation has been completed, water flow can be turned on. The valve on the inlet side of the flow sensor must be opened first.

The flow sensor must not be exposed to lower pressure than the ambient pressure (vacuum).

#### Permissible operating conditions

| Ambient temperature:                      | 055°C (indoors). Max. 30°C for optimum battery lifetime |  |  |
|-------------------------------------------|---------------------------------------------------------|--|--|
| Medium temperature of heat meter:         | 15130°C if the calculator is mounted on a wall          |  |  |
|                                           | 1590°C for calculator mounted on flow sensor            |  |  |
| Medium temperature of cooling meter:      | 250°C                                                   |  |  |
| Medium temperature of heat/cooling meter: | 2130°C if the calculator is mounted on a wall           |  |  |
|                                           | 290°C for calculator mounted on flow sensor             |  |  |
| System pressure:                          | 1.0 (1.5)16 bar for threaded meters                     |  |  |
| (See paragraph 6.5)                       | 1.0 (1.5)25 bar for flange meters                       |  |  |

#### **Electrical installations**

MULTICAL<sup>®</sup> 402 is available for both 24 VAC and 230 VAC mains supply. The mains connection consists of a twowire cable without safety ground.

Use a strong connection cable with max. 7 mm outer diameter and ensure correct cable relief in the meter. Max. permitted fuse before the meter is 6A using  $2 \times 0.75$  mm<sup>2</sup> connection cable.

National regulations for electric installations must be observed, including e.g. cable cross section used compared to the installation's fuse size (short circuit current).

Installation in Denmark is subject to announcement from the Danish Electricity Board concerning "Installations for mains supplied heat meters" for both 230 VAC direct supplied meters and 24 VAC meters powered via a safety transformer. See paragraph 10.9 for further information.

#### Service

When the meter has been mounted in the system neither welding nor freezing is allowed. Dismount the meter from the system and switch off the mains supply to the meter, if any, before starting the work.

In order to facilitate replacement of the meter, closing valves should be mounted on both sides of the meter.

Under normal operating conditions no pipe strainer is required in front of the meter.

### 6.2 Installation angle of MULTICAL<sup>®</sup> 402



MULTICAL<sup>®</sup> 402 can be installed horizontally, vertically, or at an angle







#### Important!

MULTICAL<sup>®</sup> 402 can be turned max. 45° upwards and max. 90° downwards compared to the pipe axis.



If minimum installation depth (G<sup>3</sup>/4 and G1) is required, the flow sensor must be mounted with the electronics case pointing downwards and the calculator on the side



*Figure 9* The electronics case must **not** point upwards



### 6.3 Straight inlet

MULTICAL<sup>®</sup> 402 neither requires straight inlet nor straight outlet to meet the Measuring Instruments Directive (MID) 2004/22/ EC, OIML R75:2002 and EN 1434:2009. A straight inlet section will only be necessary in case of heavy flow disturbances before the meter. We recommend to follow the guidelines of CEN CR 13582. Optimal position can be obtained if you take the below-mentioned installation methods into consideration:



- **A** Recommended flow sensor position
- **B** Recommended flow sensor position
- **C** Unacceptable position due to risk of air build-up
- **D** Acceptable position in closed systems. Unacceptable position in open systems due to risk of air build-up
- **E** A flow sensor should not be placed immediately after a valve, except for block valves (ball valve type), which must be fully open when not used for blocking
- **F** A flow sensor must never be placed on the inlet side of a pump
- **G** A flow meter should not to be placed after a two-level double bend

Figure 10

For general information concerning installation see CEN report *DS/CEN/CR* 13582, *Heat meter Installation*. *Instructions in selection, installation and use of heat meters*.

### 6.4 Installation examples



Figure 11: Threaded meter

Mounting of glands and short direct sensor mounted in MULTICAL<sup>®</sup> 402 flow part (only  $G_{4}^{3}(R_{2}^{1})$  and  $G_{1}(R_{4}^{3})$ ).

The short direct sensor from Kamstrup can only be mounted in PN16 installations. The blind plug mounted in the MULITCAL<sup>®</sup> 402 flow part can be used in connection with both PN16 and PN25.





The flow meter can be used in both PN16 and PN25 and can be supplied marked either PN16 or PN25 as desired. Possibly supplied glands can only be used for PN16. For PN25 installations shall be used suitable PN25 glands.

#### In connection with G<sup>3</sup>/<sub>4</sub>x110 mm and G1x110 mm it shall be checked that 10 mm thread run-out is sufficient.







*Figure 14: Wall mounted MULTICAL*<sup>®</sup> 402

Figure 15: Fastening of cable

If the flow sensor is installed in a humid or condensing environment, the calculator must be mounted higher than the flow sensor.



Figure 16

.

### 6.5 Operating pressure of MULTICAL<sup>®</sup> 402

In connection with installations it has proved practical to work with minimum the pressures mentioned below:

| Nominal flow q <sub>p</sub> | Recommended back |
|-----------------------------|------------------|
|                             | pressure         |
| [m³/h]                      | [bar]            |
| 0.6                         | 1                |
| 1.5                         | 1.5              |
| 2.5                         | 1                |
| 3.5                         | 1                |
| 6                           | 1.5              |
| 10                          | 1                |
| 15                          | 1.5              |

| Max. flow qs | Recommended back |  |  |
|--------------|------------------|--|--|
|              | pressure         |  |  |
| [m³/h]       | [bar]            |  |  |
| 1.2          | 2                |  |  |
| 3            | 2.5              |  |  |
| 5            | 2                |  |  |
| 7            | 2                |  |  |
| 12           | 2.5              |  |  |
| 20           | 2                |  |  |
| 30           | 2.5              |  |  |

#### Table 6

The purpose of recommended back pressure is to avoid measuring errors as a result of cavitation or air in the water.

It is not necessarily cavitation in the sensor itself, but also bubbles from cavitating pumps and regulating valves mounted before the sensor. It can take some time before such bubbles have been absorbed by the water.

Furthermore, water can include dissolved air. The amount of air which can be dissolved in water depends on pressure and temperature. This means that air bubbles can be formed due to pressure drop, e.g. caused by a velocity rise in a contraction or above the meter.

The risk of these factors affecting accuracy is reduced by maintaining a fair pressure in the installation.

In relation to above table, the steam pressure at current temperature must also be considered. Table 6 applies to temperatures up to approx. 80°C. Furthermore, it must be considered that the above-mentioned pressure is the back pressure at the sensor and that the pressure is lower <u>under</u> a contraction than <u>before</u> one (e.g. cones). This means that the pressure – when measured elsewhere - might be different from the pressure at the sensor.

This can be explained by combining the continuity equation and Bernoulli's equation. The total energy from the flow will be the same at any cross section. It can be reduced to:  $P + \frac{1}{2}\rho v^2 = \text{constant}$ .

When dimensioning the flow sensor you must take this into consideration, especially if the sensor is used within the scope of EN 1434 between  $q_p$  and  $q_s$ , and in case of heavy contractions of the pipe.



Diagram 3

### 6.6 Mounting in forward or return pipe

#### Prog. number

| A |
|---|
|   |

4

Flow sensor position: - Forward (at T1) - Return (at T2)

3

- Heat metersCooling meters
- ♦ Heat/cooling meters

 $\rm MULTICAL^{\circledast}~402$  is programmed for flow meter mounted in either forward or return pipe. The table below indicates installation conditions of:

| Formula       | k-factor                              | Prog.                                  | Hot<br>pipe  | Cold<br>pipe | Installation:                           |
|---------------|---------------------------------------|----------------------------------------|--------------|--------------|-----------------------------------------|
| Heat meter    | k-factor for<br>T1 in<br>Inlet table  | A=3<br>(Flow sensor in<br>flow pipe)   | V1 and<br>T1 | T2           | Hot Hot V1                              |
| E1=V1(T1-T2)k | k-factor for<br>T2 in<br>Outlet table | A=4<br>(Flow sensor in<br>return pipe) | T1           | V1 and<br>T2 | Hot Hot T1 (red)                        |
| Cooling meter | k-factor for<br>T1 in<br>Outlet table | A=3<br>(Flow sensor in<br>flow pipe)   | T2           | V1 and<br>T1 | Cold T1 (red)<br>V1<br>T2 (blue)<br>Hot |
| E3=V1(T2-T1)  | k-factor for<br>T2 in<br>Inlet table  | A=4<br>(Flow sensor in<br>return pipe) | V1 and<br>T2 | T1           | Cold Cold T1 (red)                      |
### 6.7 EMC conditions

MULTICAL<sup>®</sup> 402 has been designed and CE-marked according to EN 1434 Class A (corresponding to Electromagnetic environment: Class E1 of the Measuring Instruments Directive) and can thus be installed in both domestic and industrial environments.

All control cables must be drawn separately and <u>not</u> parallel to e.g. power cables or other cables with the risk of inducing electromagnetic interference. There must be a distance of min. 25 cm between signal cables and other installations.

### 6.8 Climatic conditions

MULTICAL<sup>®</sup> 402 has been designed for installation indoors in non-condensing environments with ambient temperatures from 5...55°C, however max. 30°C to ensure optimum battery lifetime.

Protection class IP54 of calculator and IP65 of flow sensor permits water sprinkling, but the meter does not stand submergence.

# 7 Calculator functions

### 7.1 Measuring sequences

MULTICAL<sup>®</sup> 402 uses time-based integration, which means that calculations of accumulated volume and energy are carried out at fixed time intervals independent of the current water flow. In normal mode the integration interval of MULTICAL<sup>®</sup> 402 is 24 s., whereas the interval is 4 s. in "fast mode".

#### "Normal mode"

I normal mode MULTICAL<sup>®</sup> 402 passes through an integration sequence of 24 sec. Through this sequence the water flow is measured at intervals of 3 s. Forward and return temperatures are measured in the middle of the sequence and at the end of the sequence energy and volume are calculated. All display readings are updated at intervals of 24 s. However, the current flow reading is updated at intervals of 12 s.

#### "Fast mode"

In fast mode MULTICAL<sup>®</sup> 402 passes through an integration sequence of 4 s. Through this sequence the water flow is measured at intervals of 1 s. Forward and return temperatures are measured in the middle of the sequence and at the end of the sequence energy and volume are calculated. Alle display readings are updated at intervals of 4 s.

Also see Meter cycle in paragraph 13.2.

### 7.2 Energy calculation

MULTICAL<sup>®</sup> 402 calculates energy on the basis of the formula stated in prEN 1434-1:2009, which uses the international temperature scale issued in 1990 (ITS-90) and the pressure definition of 16 bar.

In a simplified form the energy calculation can be expressed as: Energy = V x  $\Delta \Theta$  x k. The calculator always calculates energy in [Wh], and then converts the value to the selected measuring unit.

| E [Wh] =   | $V \times \Delta \Theta \times k \times 1000$ |
|------------|-----------------------------------------------|
| E [kWh] =  | E[Wh]/1,000                                   |
| E [MWh] =  | E[Wh]/1,000,000                               |
| E [GJ] =   | E [Wh] / 277,780                              |
| E [Gcal] = | E[Wh]/1,163,100                               |

- **V** is the added (or simulated) water volume in m<sup>3</sup>
- $\Delta \Theta$  is the measured temperature difference. Heat energy (E1)  $\Delta \Theta$  = forward temperature return temperature Cooling energy (E1)  $\Delta \Theta$  = return temperature – forward temperature Both in the display and during data reading each energy type is uniquely defined, e.g.









**k** is the heat coefficient of water which is calculated on the basis of the formula stated in prEN 1434-1:2009 (identical with the energy formula of OIML R75-1:2002).

Kamstrup can supply an energy calculator for check measurement:

| ┥ Heat energy                  | calculator - OIN               | 1L R75-1:2002    |          |  |  |  |  |
|--------------------------------|--------------------------------|------------------|----------|--|--|--|--|
| <u>Exit</u> Options <u>A</u> b | out                            |                  |          |  |  |  |  |
| - Input                        | <b>F</b> lave <b>a a W</b> are | Debug estimation |          |  |  |  |  |
|                                | Flow position                  | Return position  |          |  |  |  |  |
| l emparature:                  | 70                             | <u> 30</u>       | °С       |  |  |  |  |
| Pressure:                      |                                | 16               | bar      |  |  |  |  |
| Volume:                        |                                | 1                | m3       |  |  |  |  |
|                                |                                |                  |          |  |  |  |  |
| Calculations                   |                                |                  |          |  |  |  |  |
|                                | Flow position                  | Return position  |          |  |  |  |  |
| Specific volume:               | 1,0220                         | 1,0037           | l/kg     |  |  |  |  |
| Specific enthalpy:             | 81,7502                        | 35,3333          | Wh/kg    |  |  |  |  |
| Heat coefficient:              | 1,1354                         | 1,1561           | kWh/m3/K |  |  |  |  |
| Energy:                        | 45,4160                        | 46,2459          | kWh      |  |  |  |  |
|                                |                                |                  |          |  |  |  |  |
| Unit: kWh Resolution: 4 digits |                                |                  |          |  |  |  |  |

### 7.3 Application types

MULTICAL<sup>®</sup> 402 operates with 4 different energy formulas, E1, E3, E8 and E9, which are all calculated parallel with each integration no matter how the meter is configured. E8 and E9 solely form the basis of the calculation of average temperatures in forward and return pipes, whereas E1 and E3 are used for heat and cooling measurement respectively.

#### 7.3.1 E1 and E3

Energy types E1and E3 are described by application examples below.



#### 7.3.2 E8 and E9

E8 and E9 are used as a basis for calculation of volume-based average temperatures in forward and return pipes respectively. With every volume enumeration (every 0.01 m<sup>3</sup> for qp 1.5 m<sup>3</sup>/h) the registers are accumulated by the product of m<sup>3</sup> x °C, which makes E8 and E9 a suitable basis for calculation of volume-based average temperatures.

E8 and E9 can be used for average calculation during any period of time as long as the volume register is read at the same time as E8 and E9.

**E8= m^3 x tF** E8 is accumulated by the product of  $m^3 x tF$ 





**E9= m<sup>3</sup> x tR** E9 is accumulated by the product of  $m^3 x tR$ 

#### Resolution of E8 and E9

E8 and E9 depend on the resolution of volume (m<sup>3</sup>)

| Volume resolution       | Resolution of E8 and E9    |
|-------------------------|----------------------------|
| 0000.001 m <sup>3</sup> | m <sup>3</sup> x °C x 10   |
| 00000.01 m <sup>3</sup> | m³ x °C                    |
| 000000.1 m <sup>3</sup> | m <sup>3</sup> x °C x 0,1  |
| 0000001 m <sup>3</sup>  | m <sup>3</sup> x °C x 0,01 |

**Example 1:** Within a year a heating installation has consumed 250.00 m<sup>3</sup> district heating water and the average temperatures have been 95°C for flow and 45°C for return. E8 = 23750 and E9 = 11250.

**Example 2:** The average temperatures must be measured together with the yearly reading. Therefore, E8 and E9 are included in the yearly reading.

| Date of reading | Volume                | E8    | Average of<br>forward pipe | E9    | Average of<br>return pipe |
|-----------------|-----------------------|-------|----------------------------|-------|---------------------------|
| 2009.06.01      | 534.26 m <sup>3</sup> | 48236 |                            | 18654 |                           |
| 2008.06.01      | 236.87 m <sup>3</sup> | 20123 |                            | 7651  |                           |

| Yearly<br>consumption | 297.39 m <sup>3</sup> | 28113 | 28113/297.39 <b>=</b><br><b>94.53°C</b> | 11003 | 11003/297.39<br><b>= 36.99°C</b> |
|-----------------------|-----------------------|-------|-----------------------------------------|-------|----------------------------------|
|-----------------------|-----------------------|-------|-----------------------------------------|-------|----------------------------------|

Table 7

### 7.4 Combined heat/cooling metering

 $MULTICAL^{\mbox{\tiny 6}}$  402 is available as heat meter (Meter type 2xx), cooling meter (Meter type 5xx) or combined heat/cooling meter (Meter type 6xx).

| Meter type                            |   |    |
|---------------------------------------|---|----|
| Heat meter (MID)                      | 2 |    |
| Cooling meter                         | 5 |    |
| Heat/cooling meter                    | 6 |    |
| Country code (language on label etc.) |   | хх |

If MULTICAL<sup>®</sup> 402 has been supplied as a combined heat/cooling meter (meter type 6xx), it measures heat energy (E1) at a positive temperature difference (T1 > T2), whereas it measures cooling energy (E3) at a negative temperature difference (T2 > T1). Temperature sensor T1 (with a red type sign) must be installed in the hydraulic forward pipe, whereas T2 (with a blue type sign) is installed in the return pipe.



If the current T1 exceeds, or equals  $\theta_{hc}$  only heat energy can be measured. If the current T1 is lower than or equals  $\theta_{hc}$  only cooling energy can be measured.

 $\theta_{hc}$  is the temperature point used to change between heat and cooling measurement.  $\theta_{hc}$  is configurable in temperature range 0.01...160.00°C.

In combined heat/cooling meters  $\theta_{hc}$  should correspond to the highest occurring forward temperature in connection with cooling, e.g. 25°C. If the meter is to be used for "purchase and sale of heat",  $\theta_{hc}$  is set at 180.00°C, which cancels the  $\theta_{hc}$  function.

If you want to switch the qhc function on or off compared to current condition, it is necessary to perform a total programming of the meter by means of METERTOOL.

The change between heat and cooling measurement involves no hysteresis ( $\Delta \theta_{hc} = 0.00$ K).

 $\theta_{\text{hc}}$  is configured by means of METERTOOL (see paragraph 14.2).

### 7.5 Min. and max. flow and power

MULTICAL<sup>®</sup> 402 registers minimum and maximum flow and power on both monthly and yearly basis. The registration can be read in full via data communication. Furthermore, a few monthly and yearly registers, depending on the selected DDD-code, can be read from the display.

The min. and max. registrations include the following flow and power values with indication of date:

| Type of registration:                      | Max. data | Min. data | Yearly data | Monthly data |
|--------------------------------------------|-----------|-----------|-------------|--------------|
| Max. this year (since latest target date)  | •         |           | •           |              |
| Max. yearly data, up to latest 15 years    | •         |           | •           |              |
| Min. this year (since latest target date)  |           | •         | •           |              |
| Min. yearly data, up to latest 15 years    |           | •         | •           |              |
| Max. this month (since latest target date) | •         |           |             | •            |
| Max. monthly data, up to latest 36 months  | •         |           |             | •            |
| Min. this month (since latest target date) |           | •         |             | •            |
| Min. monthly data, up to latest 36 months  |           | •         |             | •            |

All max. and min. values are calculated as biggest and smallest average of a number of current flow or power measurements respectively. The average period used for all calculations can be selected in the interval 1...1440 min. in one minute leaps. (1,440 min. = 24 hours).

Average period and target date must be stated in the order or reconfigured by means of METERTOOL. Unless otherwise stated in the order, the default values - 60 min. for average period and target date applying to selected delivery code - are used.

At the end of a year and a month the max. and min. values are saved in the data logger, and the current max. and min. registers are "reset" according to the selected target date and the meter's internal clock and calendar.

"Reset" sets the max. value to zero and the min. value to e.g. 10000.0 kW at CCC=419.





Date of this month's min.



Value of year-to-date max.



Value of this month's min.



### 7.6 Temperature measurement

Forward and return temperatures are measured by means of an accurately matched Pt500 or Pt100 sensor set. During each temperature measurement MULTICAL<sup>®</sup> 402 sends a measuring current through each sensor. The current is approx. 0.5 mA for Pt500 and approx. 2.5 mA for Pt100. Two measurements are carried out in order to suppress a possible low-frequency noise of 50 Hz (or 60 Hz), picked up via the sensor cables. Furthermore, current measurements are made on internal reference resistors in order to secure optimum measuring stability.

The display presents forward and return temperatures as well as the temperature difference in range 0.00°C to 165.00°C.

Forward or return temperatures under 0°C are displayed as 0.00°C, and temperatures above 165°C are displayed as 165.00°C. If one or both temperature sensors are outside measuring range, Info=008 (forward), Info=004 (return) or Info=012 (both sensors outside range) is set.

At negative temperature difference (forward < return) the temperature difference is displayed with a negative sign and cooling energy is calculated (provided that the meter has been configured for cooling metering).

#### 7.6.1 Measuring current and power

Measuring current is only sent through the temperature sensors during the short duration of the temperature measurement. The effective power that is deposited in the sensor elements is thus very small, and its influence on self-heating of the temperature sensors is typically less than 1/1000 K.

|                                    | Pt100          | Pt500    |
|------------------------------------|----------------|----------|
| Measuring current                  | < 2.5 mA       | < 0.5 mA |
| Peak power                         | < 1.0 mW       | < 0.2 mW |
| <b>RMS influence</b> (fast mode)   | $<$ 10 $\mu$ W | < 2 µW   |
| <b>RMS influence</b> (normal mode) | < 2 µW         | < 0.4 µW |

#### 7.6.2 Average temperatures

MULTICAL<sup>®</sup> 402 currently calculates the average temperatures of forward and return pipes (T1 and T2) in °C without decimals, and background calculations E8 and E9 ( $m^3 x$  T1 and  $m^3 x$  T2) are carried out with every volume enumeration (e.g. with every 0.01  $m^3$  if the meter size is qp 1.5), whereas the display is updated every 24 hours. The average temperatures are thereby volume weighted and can, thus, be used directly for checking purposes.

| Type of registration                             | Average | Yearly data | Monthly data |
|--------------------------------------------------|---------|-------------|--------------|
| Year-to-date average (since latest target date)  | •       | •           |              |
| Month-to-date average (since latest target date) | •       |             | •            |



Year-to-date average of T1

(Current date with a stipulated line under year or month is shown immediately BEFORE this reading)

### 7.7 Display functions

MULTICAL<sup>®</sup> 402 is fitted with an easily readable LC-display comprising 8 digits, measuring units and an information field. Energy and volume readings use 7 digits with corresponding measuring units, whereas 8 digits are used to display e.g. the meter number.

Basically accumulated energy is displayed. Activating the pushbuttons, the display immediately switches to other readings. The display automatically returns to energy indication 4 minutes after the latest activation of the pushbuttons.



#### 7.7.1 Primary and secondary readings

The upper pushbutton is shifts between primary readings. Consumers normally use the first primary readings in connection with self-reading for billing purposes.

The lower pushbutton calls up secondary information on the selected primary reading.

Example: If the selected primary reading is "heat energy", the secondary readings can be yearly data and monthly data for heat energy.



#### 7.7.2 Display structure

The below-mentioned diagram shows the display structure with up to 16 primary readings as well as a number of secondary readings under most primary readings. The number of secondary readings in connection with yearly and monthly data has been determined under the DDD-code. In the absence of other information in the order, readings will consist of 2 yearly data sets and 12 monthly data sets. The target date will be the standard date applying to the selected country code.

As the display is configured according to the customer's need (selection of DDD-code) the display will usually include much fewer readings than shown in the below diagram.



Figure 17

#### 7.7.3 Display grouping

MULTICAL<sup>®</sup> 402 can be configured for many different applications, which creates the need for various display groups. The table below includes <u>possible</u> readings [•] of heat meters, cooling meters etc., readings supported by date stamp as well as the reading, to which the display automatically reverts 4 min. after the latest activation of the pushbuttons [1•]. (This paragraph is only used in connection with the creation of DDD-codes).

|      |                                                         |      |                       | Date Stamp | Heat meter<br>DDD=2xx | Heat meter<br>DDD=4xx | Cooling meter<br>DDD=5xx | Heat/cooling<br>DDD=6xx | Volume/Heat<br>DDD=7xx | Volume/Cool<br>DDD=8xx | Energy meter<br>DDD=9xx |
|------|---------------------------------------------------------|------|-----------------------|------------|-----------------------|-----------------------|--------------------------|-------------------------|------------------------|------------------------|-------------------------|
| 1.0  | Heat energy (F1)                                        |      |                       |            | 1.                    | 1.                    | 1                        | 1.                      |                        |                        | 1.                      |
|      |                                                         | 1.1  | Yearly data           | •          | •                     | •                     |                          | •                       |                        |                        | •                       |
|      |                                                         | 1.2  | Monthly data          | •          | •                     | •                     |                          | •                       |                        |                        | •                       |
| 2.0  | Cooling energy (E3)                                     |      |                       |            |                       |                       | 1•                       | •                       |                        |                        | •                       |
|      |                                                         | 2.1  | Yearly data           | •          |                       |                       | •                        | •                       |                        |                        | •                       |
|      |                                                         | 2.2  | Monthly data          | ٠          |                       |                       | ٠                        | •                       |                        |                        | •                       |
| 2.PM | High-resolution energy (only in verification mode)      |      |                       |            |                       |                       |                          |                         |                        |                        |                         |
| 3.X  | Other energy types                                      |      |                       |            |                       |                       |                          |                         |                        |                        |                         |
|      |                                                         | 3.6  | E8 (m3*tf)            |            | •                     | •                     |                          |                         |                        |                        | •                       |
|      |                                                         | 3.7  | E9 (m3*tr)            |            | •                     | •                     |                          |                         |                        |                        | •                       |
| 4.0  | Volume                                                  |      |                       |            | •                     | •                     | •                        | ٠                       | 1•                     | 1•                     | •                       |
|      |                                                         | 4.1  | Yearly data           | ٠          | •                     | •                     | •                        | •                       | •                      | •                      | •                       |
| 6.04 | Nature Iliah menatukian (antain                         | 4.2  | Monthly data          | •          | •                     | •                     | •                        | •                       | •                      | •                      | •                       |
| 4.PM | volume - High-resolution (only in<br>verification mode) |      |                       |            |                       |                       |                          |                         |                        |                        |                         |
| 6.0  | Hour counter                                            |      |                       |            | •                     | •                     | •                        | ٠                       | •                      | •                      | •                       |
| 7.0  | T1 (Flow)                                               |      |                       |            | •                     | •                     | •                        | •                       | •                      | •                      | •                       |
|      |                                                         | 7.1  | Year-to-date average  | _          | •                     | •                     | •                        | •                       | •                      | •                      | •                       |
|      |                                                         | 7.2  | Month-to-date average | _          | •                     | •                     | •                        | •                       | •                      | •                      | •                       |
| 8.0  | 12 (Return)                                             | 0.1  | Vear to data average  |            | •                     | •                     | •                        | •                       | •                      | •                      | •                       |
|      |                                                         | 0.1  | Month to date average |            | •                     | •                     | •                        | •                       | •                      | •                      | •                       |
| 9.0  | T1 T2 (At) = cooling                                    | 0.2  | Month-to-date average |            | •                     | •                     | •                        | •                       | •                      | •                      | •                       |
| 12.0 | Flow                                                    |      |                       |            |                       |                       | -                        | •                       | •                      | •                      | •                       |
| 12.0 |                                                         | 12.1 | This year's max.      | •          | •                     | •                     | •                        | •                       | •                      | •                      | •                       |
|      |                                                         | 12.2 | Max. vearly data      | •          | •                     | •                     | •                        | •                       | •                      | •                      | •                       |
|      |                                                         | 12.3 | This year's min.      | •          | •                     | •                     | •                        | •                       | •                      | •                      | •                       |
|      |                                                         | 12.4 | Min. yearly data      | •          | •                     | •                     | •                        | •                       | •                      | •                      | •                       |
|      |                                                         | 12.5 | This month's max.     | ٠          | •                     | •                     | •                        | •                       | •                      | •                      | •                       |
|      |                                                         | 12.6 | Max. monthly data     | •          | •                     | •                     | ٠                        | •                       | •                      | •                      | •                       |
|      |                                                         | 12.7 | This month's min.     | •          | •                     | •                     | •                        | •                       | •                      | •                      | •                       |
|      |                                                         | 12.8 | Min. monthly data     | •          | •                     | •                     | •                        | •                       | •                      | •                      | •                       |
| 14.0 | Power (V1)                                              |      |                       |            | •                     | •                     | •                        | •                       | •                      | •                      | •                       |
|      |                                                         | 14.1 | This year's max.      | •          | •                     | •                     | •                        | •                       | •                      | •                      | •                       |
|      |                                                         | 14.2 | Max. yearly data      | •          | •                     | •                     | •                        | •                       | •                      | •                      | •                       |
|      |                                                         | 14.3 | inis year's min.      | •          | •                     | •                     | •                        | •                       | •                      | •                      | •                       |
|      |                                                         | 14.4 | win. yearly data      | •          | •                     | •                     | •                        | •                       | •                      | •                      | •                       |
|      |                                                         | 14.5 | Max monthly data      | •          | •                     | •                     | •                        | •                       | •                      | •                      | •                       |
|      |                                                         | 14.0 | This month's min      | •          | •                     | •                     | •                        | •                       | •                      | •                      | •                       |
|      |                                                         | 14.7 | Min monthly data      | •          | •                     |                       | •                        | •                       | •                      | •                      | •                       |
| 1    | 1                                                       | 14.0 | mini. monting uutu    | -          | •                     | •                     | •                        | •                       | •                      | •                      | •                       |

### MULTICAL® 402

|      | $\bigcirc$               |       |                            |         | Date Stamp | Heat meter<br>DDD=2xx | Heat meter<br>DDD=4xx | Cooling<br>meter<br>DDD=5xx | Heat/cooling<br>DDD=6xx | Volume/Heat<br>DDD=7xx | Volume/Cool<br>DDD=8xx | Energy meter<br>DDD=9xx |
|------|--------------------------|-------|----------------------------|---------|------------|-----------------------|-----------------------|-----------------------------|-------------------------|------------------------|------------------------|-------------------------|
| 15.0 | VA (Input A)             |       |                            |         |            | •                     | •                     | •                           | •                       | •                      | •                      | •                       |
|      |                          | 15.1  | Meter No. VA               |         |            | •                     | •                     | •                           | •                       | •                      | •                      | •                       |
|      |                          | 15.2  | Yearly data                |         | •          | •                     | •                     | •                           | •                       | •                      | •                      | •                       |
|      |                          | 15.3  | Monthly data               |         | •          | •                     | •                     | •                           | •                       | •                      | •                      | •                       |
| 16.0 | VB (Input B)             |       | ,                          |         |            | •                     | •                     | •                           | •                       | •                      | •                      | •                       |
|      |                          | 16.1  | Meter No. VB               |         |            | ٠                     | •                     | •                           | •                       | •                      | •                      | •                       |
|      |                          | 16.2  | Yearly data                |         | •          | •                     | •                     | •                           | •                       | •                      | •                      | •                       |
|      |                          | 16.3  | Monthly data               |         | •          | •                     | •                     | •                           | •                       | •                      | •                      | •                       |
| 17.0 | TA2                      |       | ,                          |         |            | •                     | •                     |                             | •                       | •                      | •                      | •                       |
|      |                          | 17.1  | TL2                        |         |            | •                     | •                     |                             |                         | •                      | •                      | •                       |
| 18.0 | TA3                      |       |                            |         |            | ٠                     | •                     |                             | •                       | •                      | •                      | •                       |
|      |                          | 18.1  | TL3                        |         |            | •                     | ٠                     |                             |                         | •                      | •                      | •                       |
| 19.0 | Info Code                |       |                            |         |            | •                     | ٠                     | •                           | ٠                       | •                      | •                      | •                       |
|      |                          | 19.1  | Info event counter         |         |            | •                     | •                     | •                           | •                       | •                      | •                      | •                       |
|      |                          | 19.2  | Info logger (36 latest eve | ents)   | ٠          | •                     | •                     | •                           | •                       | •                      | •                      | •                       |
| 20.0 | Customer No.<br>(N° 1+2) |       |                            |         |            | •                     | •                     | •                           | •                       | •                      | •                      | •                       |
|      |                          | 20.1  | Date                       |         |            | •                     | •                     | •                           | •                       | •                      | •                      | •                       |
|      |                          | 20.2  | Hour                       |         |            | •                     | •                     | •                           | ٠                       | •                      | •                      | •                       |
|      |                          | 20.3  | Target date                |         |            | •                     | ٠                     | •                           | ٠                       | •                      | •                      | •                       |
|      |                          | 20.4  | Serial no.                 | (N° 3)  |            | ٠                     | •                     | •                           | •                       | •                      | •                      | •                       |
|      |                          | 20.5  | Prog. (A-B-CCC-CCC)        | (N° 4)  |            | •                     | •                     | •                           | •                       | •                      | •                      | •                       |
|      |                          | 20.6  | Config 1 (DDD-EE)          | (N° 5)  |            | •                     | •                     | •                           | •                       | •                      | •                      | •                       |
|      |                          | 20.7  | Config 2 (FF-GG-M-N)       | (N° 6)  |            | •                     | ٠                     | •                           | ٠                       | •                      | •                      | •                       |
|      |                          | 20.8  | Software edition           | (Nº 10) |            | •                     | •                     | •                           | •                       | •                      | •                      | •                       |
|      |                          | 20.9  | Software check sum         | (Nº 11) |            | •                     | •                     | •                           | •                       | •                      | •                      | •                       |
|      |                          | 20.10 | Segment test               |         |            | •                     | •                     | •                           | •                       | •                      | •                      | •                       |
|      |                          | 20.15 | M-Bus primary address      | (Nº 31) |            | •                     | •                     | •                           | •                       | •                      | •                      | •                       |
|      |                          | 20.16 | M-Bus second. address      | (Nº 32) |            | •                     | •                     | •                           | •                       | •                      | •                      | •                       |



Example of reading of PROG number.

A total overview of existing display codes (DDD) is described in a separate document. Please contact Kamstrup for further details.

### 7.8 Info codes

MULTICAL<sup>®</sup> 402 constantly monitors a number of important functions. If a serious error occurs in measuring system or installation, a flashing "info" will appear in the display. The "INFO" field keeps flashingas long as the error exists no matter which reading you choose. The "INFO" field automatically disappears when the reason for the error has been removed. (However, configuration for "Manual reset of info codes" is possible via country code creation. If "Manual reset of info codes", has been chosen, info codes will remain in the display until they have been manually reset).

#### 7.8.1 Info code types

| Info code | Description                                   | Response time |
|-----------|-----------------------------------------------|---------------|
| 0         | No irregularities                             | -             |
| 1         | Supply voltage has been interrupted           | -             |
| 8         | Temperature sensor T1 outside measuring range | < 30 sec.     |
| 4         | Temperature sensor T2 outside measuring range | < 30 sec.     |
| 4096      | Flow sensor with weak signal or air           | < 30 sec.     |
| 16384     | Flow sensor with wrong flow direction         | < 30 sec.     |

If more than one info code appear at a time, the sum of info codes is displayed. If e.g. both temperature sensors are outside measuring range, info code 12 (info code 4+8) is displayed.

#### 7.8.2 Examples of info codes in the display



Furthermore, the info code is saved in daily, monthly and yearly logger for diagnostic purposes.

#### 7.8.3 Info event counter



Info event counter

Enumeration each time the info code is changed (the info code is added to the info-event counter and data logged when it has existed for an hour).

The info event counter of a new meter will be 0 as "transport mode" prevents counting during transportation.

| Info code    | "info" in display | Registration in info, daily,<br>monthly or yearly logger | Enumeration of Info event                                                   |  |
|--------------|-------------------|----------------------------------------------------------|-----------------------------------------------------------------------------|--|
| 00001        | No                | Yes                                                      | With each "Power-On-Reset"                                                  |  |
| 00004, 00008 | Yes               | Yes                                                      | When Info 4 or 8 is set or removed.<br>Max. 1 per temperature measurement   |  |
| 4096, 16384  | Yes               | Yes                                                      | When Info is set and when Info is deleted.<br>Max. one per code,per 24 hrs. |  |

#### 7.8.4 Transport mode

When the meter leaves the factory it is in transport mode, i.e. the info codes are active in the display only, not in the data logger. This prevents "infoevent" from counting during transportation and irrelevant data from being saved in the info logger. The first time the meter accumulates the volume register after the installation, the info code automatically becomes active.

### 7.9 Tariff functions

MULTICAL<sup>®</sup> 402 has 2 extra registers TA2 and TA3, which can accumulate heat energy or cooling energy (EE=20 accumulates volume) parallel with the main register based on entered tariff conditions. Irrespective of the selected tariff type the tariff registers are called TA2 and TA3 in the display.

The main register is always accumulated as it is considered the legal billing register no matter the selected tariff function. Tariff conditions TL2 and TL3 are monitored at each integration. If the tariff conditions are fulfilled, consumed heat energy is accumulated in either TA2 or TA3 parallel with the main register.



2 tariff conditions TL2 and TL3, which are always used in the same tariff type, are connected to each tariff function. Therefore, it is not possible to "mix" 2 tariff types.

#### Example: EE=11 (Power tariff)

TA2 shows energy consumed...



...above power limit TL2 (but below TL3)



#### 7.9.1 Tariff types

| EE=                                                                                                    | TARIFF TYPE                                                                                                                                                                                                       | FUNCTION                                                                                                                                      |
|--------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
| 00                                                                                                     | No active tariff                                                                                                                                                                                                  | No function                                                                                                                                   |
| 11                                                                                                     | Power tariff                                                                                                                                                                                                      | Energy is accumulated in TA2 and TA3 on the basis of the power limits entered in TL2 and TL3 $$                                               |
| 12                                                                                                     | Flow tariff                                                                                                                                                                                                       | Energy is accumulated in TA2 and TA3 on the basis of the flow limits entered in TL2 and TL3                                                   |
| 13                                                                                                     | 13T1-T2 tariffEnergy is accumulated in TA2 and TA3 on the basis of the Δt-limits entered in TL2 and14Flow temperature tariffEnergy is accumulated in TA2 and TA3 on the basis of the tF-limits entered in TL2 and |                                                                                                                                               |
| 14                                                                                                     |                                                                                                                                                                                                                   |                                                                                                                                               |
| 15 Return temperature tariff Energy is accumulated in TA2 and TA3 on the basis of the tR-limits enter  |                                                                                                                                                                                                                   | Energy is accumulated in TA2 and TA3 on the basis of the tR-limits entered in TL2 and TL3                                                     |
| 19                                                                                                     | Time controlled tariff                                                                                                                                                                                            | TL2=Start time for TA2<br>TL3=Start time for TA3                                                                                              |
| 20         Heat/cooling volume tariff<br>(TL2 and TL3 are not used)         Volume (V1)<br>T1 is below |                                                                                                                                                                                                                   | Volume (V1) is divided into TA2 for heat (T1>T2) and TA3 for cooling (T1 <t2) below="" is="" limit<="" provided="" t1="" th="" that=""></t2)> |
| 21                                                                                                     | PQ-tariff                                                                                                                                                                                                         | Energy is saved in TA2 if P>TL2 and energy is saved in TA3 if Q>TL3                                                                           |

The table below lists the tariff types for which MULTICAL<sup>®</sup> 402 can be configured:

#### EE=00 No active tariff

If no tariff function is required, you select the setup EE=00.

The tariff function can, however, be activated at a later stage through reconfiguration via METERTOOL for  $MULTICAL^{\otimes}$  402. See section 14 METERTOOL.

#### EE=11 Power controlled tariff

If the current power exceeds TL2 but is lower than or equal to TL3, the energy is counted in TA2 parallel to the main register. If the current power exceeds TL3, the energy is counted in TA3 parallel to the main register.

| $P \le TL2$       | Accumulation in main register only    |           |
|-------------------|---------------------------------------|-----------|
| $TL3 \ge P > TL2$ | Accumulation in TA2 and main register | TL3 > TL2 |
| P > TL3           | Accumulation in TA3 and main register |           |

Setting up data TL3 must include a higher value than TL2. The power controlled tariff is e.g. used as a basis for the individual heat consumer's connection fee. Furthermore, this tariff type can provide valuable statistical data if the heating station considers new construction activities.

#### EE=12 Flow controlled tariff

If the current water flow exceeds TL2 but is lower than or equal to TL3, the energy is counted in TA2 parallel to the main register. If the current water flow exceeds TL3, the energy is counted in TA3 parallel to the main register. Setting up data TL3 must include a higher value than TL2.

| $q \le TL2$       | Accumulation in main register only    |           |
|-------------------|---------------------------------------|-----------|
| $TL3 \ge P > TL2$ | Accumulation in TA2 and main register | TL3 > TL2 |
| q > TL3           | Accumulation in TA3 and main register |           |

The flow controlled tariff is e.g. used as a basis for the individual heat consumer's connection fee. Furthermore, this tariff type can provide valuable statistical data if the heating station considers new construction activities.

When either power or flow tariff is used you obtain an overview of the total consumption compared to the part of the consumption used above tariff limit.

#### EE=13 T1-T2 tariff ( $\Delta t$ )

If the current T1-T2 ( $\Delta t$ ) is lower than TL2 but exceeds TL3, the energy is counted in TA2 parallel to the main register. If current cooling falls below or is equal to TL3, the energy is counted in TA3 parallel with the main register.

| $\Delta t \ge TL2$     | Accumulation in main register only    |           |
|------------------------|---------------------------------------|-----------|
| $TL3 < \Delta t < TL2$ | Accumulation in TA2 and main register | TL3 < TL2 |
| $\Delta t \leq TL3$    | Accumulation in TA3 and main register |           |

Setting up tariff limits TL3 must always include a higher value than TL2.

The T1-T2 tariff can be used as a basis for weighted user charge. Low  $\Delta t$  (small difference between forward and return temperatures) is uneconomical for the heat supplier.

#### E=14 Forward temperature tariff

If the current forward temperature (T1) exceeds TL2 but is lower than or equal to TL3, the energy is counted in TA2 parallel to the main register. If the current forward temperature exceeds TL3, the energy is counted in TA3 parallel to the main register.

| $T1 \leq TL2$     | Accumulation in main register only    |           |
|-------------------|---------------------------------------|-----------|
| $TL3 \ge P > TL2$ | Accumulation in TA2 and main register | TL3 > TL2 |
| T1 > TL3          | Accumulation in TA3 and main register |           |

Setting up data TL3 must always include a higher value than TL2.

The forward temperature tariff can be used as a basis for billing consumers who are guaranteed a certain forward temperature. If the "guaranteed" minimum temperature is entered as TL3, the payable consumption is accumulated in TA3.

#### EE=15 Return temperature tariff

If the current return temperature (T2) exceeds TL2 but is lower than or equal to TL3, the energy is counted in TA2 parallel to the main register. If the current return temperature exceeds TL3, the energy is counted in TA3 parallel to the main register.

| $T2 \leq TL2$      | Accumulation in main register only    |           |
|--------------------|---------------------------------------|-----------|
| $TL3 \ge T2 > TL2$ | Accumulation in TA2 and main register | TL3 > TL2 |
| T2 > TL3           | Accumulation in TA3 and main register |           |

Setting up data TL3 must always include a higher value than TL2.

The return temperature tariff can be used as a basis for weighted user charge. A high return temperature indicates insufficient heat utilization which is uneconomical for the heat supplier.

#### EE=19 Time-controlled tariff

The time-controlled tariff is used for time division of the energy consumption. If TL2 = 08:00 and TL3 = 16:00, the daily consumption from 8 a.m. to 4 p.m. is accumulated in TA2, whereas the consumption during evening and night from 4:01 p.m. to 7:59 a.m. will be accumulated in TA3.

TL2 must include a lower hour value than TL3.

| TL 3 $\geq$ Clock $\geq$ TL2 | Accumulation in TA2 and main register | TI 3 > TI 2 |
|------------------------------|---------------------------------------|-------------|
| TL 2 > Clock > TL3           | Accumulation in TA3 and main register |             |

The time tariff is suitable for billing in housing areas close to industrial areas with large district heating consumption, as well as for billing industrial customers.

#### EE=20 Heat/cooling volume tariff

Heat/cooling volume tariff is used for division of volume into heat and cooling consumption. TA2 accumulates the volume consumed together with E1 (heat energy) and TA3 accumulates the volume consumed together with E3 (cooling energy).

| $T1 \ge T2$ and $T1 \ge \theta$ hc | Volume is accumulated in TA2 and V1 |  | TL2 and TL3 are |
|------------------------------------|-------------------------------------|--|-----------------|
| $T2 > T1$ and $T1$ $\thetahc$      | Volume is accumulated in TA3 and V1 |  | not used        |

For combined heat/cooling metering the total volume is accumulated in the register V1, whereas heat energy is accumulated in E1 and cooling energy in E3. The heat/cooling tariff is used for dividing the consumed volume into heat and cooling volume.

EE=20 should always to be selected together with heat/cooling meters type 402-xxxxxx-6xx.

#### E=21 PQ tariff

The PQ tariff is a combined power and flow tariff. TA2 functions as power tariff and TA3 functions as flow tariff.

| $P \leq TL2$ and $q \leq TL3$ | Accumulation in main register only         |   |
|-------------------------------|--------------------------------------------|---|
| P > TL2                       | Accumulation in TA2 and main register      | T |
| q > TL3                       | Accumulation in TA3 and main register      | 1 |
| P > TL2 and $q > TL3$         | Accumulation in TA2, TA3 and main register |   |

| TL2 = power limit (P) |  |
|-----------------------|--|
| TL3 = flow limit (q)  |  |

The PQ tariff can e.g. be used for customers who pay a fixed charge based on max. power and max. flow.

### 7.10 Data loggers

MULTICAL<sup>®</sup> 402 has a permanent memory (EEPROM), in which the values of various data loggers are saved. The meter includes the following data loggers:

| Data logging interval | Data logging depth                     | Logged value                 |  |  |
|-----------------------|----------------------------------------|------------------------------|--|--|
| Yearly logger         | 15 years                               | Counter register •           |  |  |
| Monthly logger        | 36 months                              | Counter register •           |  |  |
| Daily logger          | 460 days                               | Consumption (increase)/day 🔸 |  |  |
| Info logger           | 50 Events (36 events can be displayed) | Info code and date           |  |  |

The loggers are static ones and the register types can therefore not be changed, the same applies to the logging intervals. When the last record has been written into the EEPROM the oldest one will be overwritten.

#### 7.10.1 Yearly, monthly, daily loggers

The following registers are logged every year and every month on target date as counter values. Furthermore, the day's increase is logged at midnight.

| Register type          | Description                             | Yearly<br>logger | Monthly<br>logger | Daily logger |
|------------------------|-----------------------------------------|------------------|-------------------|--------------|
| Date (YY.MM.DD)        | Logging time, year, month and day       | •                | •                 | •            |
| E1                     | E1=V1(T1-T2) Heat energy                | •                | •                 | •            |
| E3                     | E3=V1(T2-T1) Cooling energy             | •                | •                 | •            |
| E8                     | E8=m <sup>3</sup> x T1 (flow)           | •                | •                 | •            |
| E9                     | E9=m <sup>3</sup> x T2 (return)         | •                | •                 | •            |
| TA2                    | Tariff register 2                       | •                | •                 | -            |
| TA3                    | Tariff register 3                       | •                | •                 | -            |
| V1                     | Volume register for Volume 1            | •                | •                 | •            |
| VA                     | Extra water meter connected to Input A  | •                | •                 | •            |
| VB                     | Extra water meter connected to Input B  | •                | •                 | •            |
| INFO                   | Information code                        | •                | •                 | •            |
| DATE FOR MAX. FLOW V1  | Date stamp for max. flow during period  | •                | •                 | -            |
| MAX. FLOW V1           | Value of max. flow during period        | •                | •                 | -            |
| DATE FOR MIN. FLOW V1  | Date stamp for min. flow during period  | •                | •                 | -            |
| MIN. FLOW V1           | Value of min. flow during period        | •                | •                 | -            |
| DATE FOR MAX. POWER V1 | Date stamp for max. power during period | •                | •                 | -            |
| MAX. POWER V1          | Value of max. power during period       | •                | •                 | -            |
| DATE FOR MIN. POWER V1 | Date stamp for min. flow during period  | •                | •                 | -            |
| MIN. POWER V1          | Value for min. power during period      | •                | •                 | -            |
| T1avg                  | Time average of T1                      | -                | -                 | •            |
| T2avg                  | Time average of T2                      | -                | -                 | •            |

#### 7.10.2 Info logger

Every time the information code has been changed for minimum one hour, date and info code are logged. Thus, it is possible to data read the latest 50 changes of the information code as well as the date the change was made.

| Register type   | Description                       |
|-----------------|-----------------------------------|
| Date (YY.MM.DD) | Logging time, year, month and day |
| info            | Information code on above date    |

When the info logger is read from the display, the latest 36 changes including dates can be read too. All 50 changes can be read by means of the PC program METERTOOL (paragraph 14).

### 7.11 Setup via front keys

The meter is fitted with two keys – a main key  $\mathbf{V}$  and a subkey  $\mathbf{W}$ . It is possible to adjust date and time or change other registers manually by means of the keys on the calculator's front

#### 7.11.1 Activate setup menu

The setup menu is activated as follows:

- 1) Select the reading you want to change in the display
- 2) Disconnect the meter supply by removing the supply plug from the meter.
- 3) Wait until the reading disappears from the meter, i.e. until the display is totally blank (up to 2.5 min.). Do not activate any keys
- 4) Keep pressing the main key while connecting the supply (plugging the supply plug into the meter) until no more lines are shown in the display
- 5) The setup menu is now active

Having activated the setup menu the register you want to change is displayed and the rightmost digit in the display flashes:



If you try to activate the setup menu of a register which is not supported by setup, the meter will start in the usual way beginning with the legal reading without activating the setup menu.

#### 7.11.2 Set up reading value

Having activated the setup menu the current value of the reading to be changed will be displayed. It is possible to cancel setup without saving the change, as described in paragraph 7.11.3.

The value of the flashing digit can be changed by pressing the subkey. The digit is increased by one each time the key is pressed, and from 9 it reverts to 0:



When you press the main key you change to the next digit from right to left:

| date<br>2009.07, 15 | <b>○</b> ⇒ | date |
|---------------------|------------|------|
|---------------------|------------|------|

The active digit flashes and this digit can be changed by pressing the subkey. You go from the leftmost to the rightmost digit by pressing the main key.

#### 7.11.3 Exit setup menu

When the value of the reading has been changed to the required value, you quit by pressing the main key continuously for 5-6 seconds.

It should be checked whether the value is valid for the reading in question. If so, the value is saved and the new value is displayed together with the "OK" symbol. If not, the old value is displayed without the "OK" symbol.



The setup menu can be deactivated without saving the change in the following way:

- 1) Switch off the supply to the meter
- 2) Wait until the display is completely blank
- 3) Connect the supply without pressing any keys

Wait a moment without pressing any keys. The legal reading appears and the setup menu is deactivated.

Note: After four minutes without activating any keys, the setup menu is deactivated and the display returns to the legal reading. If the "OK" is not displayed, no data have been saved.

#### 7.11.4 List of readings supported by the setup menu

Readings supported by the setup menu:

Date Clock Input A (preset of register) Input B (preset of register) Meter no. of Input A Meter no. of Input B Primary M-Bus address

Note! Pulse values of Input A and Input B (FF and GG) cannot be changed via the front keys.

### 7.12 Reset via front keys

The meter is fitted with two keys – a main key  $\bigcirc$  and a subkey . It is possible to reset the operating hour counter and the info-event counter by means of the keys on the calculator front.

#### 7.12.1 Activate reset menu

The reset menu is activated as follows:

- 1) Select the reading to be reset in the display
- 2) Disconnect the meter supply by removing the supply plug from the meter
- 3) Wait until the reading disappears from the meter, i.e. until the display is totally blank (up to 2.5 min.). Do not activate any keys
- 4) Keep pressing the main key while connecting the supply (by plugging the supply plug into the meter) until no more lines are shown in the display
- 5) The reset menu is now active

Having activated the reset menu either operating hour counter or info-event counter is displayed, the zero flashing:



When the reset menu is active a 0 will be displayed and it will not be possible to change the value. It will only be possible to save the zero or cancel, as described in 7.11.3.

If you try to activate the reset menu of a reading which is not supported by reset, the meter will start in the usual way beginning with the legal reading without starting the reset menu.

#### 7.12.2 Exit reset menu

When operating hour counter or info-event counter has been reset, you quit by pressing the main key continuously for 5-6 seconds. Subsequently an "OK" is displayed.



The reset menu can be deactivated without saving the change in the following way:

- 1) Disconnect the meter supply by removing the supply plug from the meter
- 2) Wait until the display is completely blank
- 3) Connect the supply without pressing any keys (plugging the supply plug into the meter)

Wait a moment without pressing any keys. The legal reading appears and the reset menu is deactivated.

Note: If no keys are activated for 4 min., the reset menu is deactivated and the display reverts to legal reading. If the "OK" is not displayed, no data have been saved.

## 8 Flow Sensor

### 8.1 Ultrasound combined with piezo ceramics

Through the latest 20 years ultrasonic measurement has proved the most long-term stable measuring principle for heat measurement. Both experience from ultrasonic meters in operation and repeated reliability tests carried out in Kamstrup's accredited long-term test equipment as well as by AGFW in Germany have documented the long-term stability of ultrasonic meters.

### 8.2 Principles

The thickness of a piezo ceramic element changes when exposed to an electric field (voltage). When the element is influenced mechanically, a corresponding electric charge is generated. Therefore, the piezo ceramic element can function as both sender and receiver.

Within ultrasonic flow measuring there are two main principles: the transit time method and the Doppler method.

The Doppler method is based on the frequency change which occurs when sound is reflected by a moving particle. This is very similar to the effect you experience when a car drives by. The sound (the frequency) decreases when the car passes by.

### 8.3 Transit time method

The transit time method used in MULTICAL<sup>®</sup> 402 utilizes the fact that it takes an ultrasonic signal sent in the opposite direction of the flow longer to travel from sender to receiver than a signal sent in the same direction as the flow.

The transit time difference of a flow sensor is very small (nanoseconds). Therefore, the time difference is measured as a phase difference between the two 1 MHz sound signals in order to obtain the necessary accuracy.



#### PHASE DIFFERENCE

Diagram 4

In principle, flow is determined by measuring the flow velocity and multiplying it by the area of the measuring pipe:

$$Q = F \times A$$

where:

 ${\it Q}$  is the flow

- F is the flow velocity
- A Is the area of the measuring pipe

The area and the length, which the signal travels in the sensor, are well-known factors. The length which the signal travels can be expressed as  $L = T \times V$ , which can also be written as:

$$T = \frac{L}{V}$$

where:

- L is the measuring distance
- V is the sound propagation velocity
- T is the time

$$\Delta T = L \times \left(\frac{1}{V_1} - \frac{1}{V_2}\right)$$

In connection with ultrasonic flow sensors the velocities  $V_1$  and  $V_2$  can be stated as:

 $V_1 = C - F$  and  $V_2 = C + F$  respectively

where: C is the velocity of sound in water

Using the above formula you get:

$$\Delta T = L \times \frac{1}{C - F} - \frac{1}{C + F}$$

which can also be written as:

$$\Delta T = L \times \frac{(C+F) - (C-F)}{(C-F) \times (C+F)}$$

$$\Downarrow$$

$$\Delta T = L \times \frac{2F}{C^2 - F^2}$$

As  $C\rangle\rangle F$ ,  $F^2$  can be omitted and the formula reduced as follows:

$$F = \frac{\Delta T \times C^2}{L \times 2}$$

In order to minimize the influence from variations of the velocity of sound in water, the velocity of sound in water is measured by means of the built-in ASIC. For this purpose a number of absolute time measurements between the two transducers are made. These measurements are subsequently converted into the current velocity of sound, which is used in connection with flow calculations.

### 8.4 Signal paths





q<sub>p</sub> 0.6...1.5 m<sup>3</sup>/h

2 parallel tracks

The sound path is parallel with the measuring pipe and is sent from the transducers via reflectors. q<sub>p</sub> 2.5...15 m<sup>3</sup>/h

#### Triangle

The sound path covers the measuring pipe in a triangle and is sent from the transducers around the measuring pipe via reflectors.

### 8.5 Flow limits

In the meter's working range from min. cutoff and far beyond qs there is a linear connection between the flow rate and the measured water flow.

In practice the highest possible water flow through the sensor will be limited by the pressure in the system or cavitation due to too low back pressure.

If the flow is lower than min. cut off or negative, MULTICAL<sup>®</sup> 402 does not measure any flow.

According to EN 1434 the upper flow limit  $q_s$  is the highest flow at which the flow sensor may operate for short periods of time (<1h/day, <200h/year) without exceeding max. permissible errors. MULTICAL<sup>®</sup> 402 has no functional limitations during the period, when the meter operates above  $q_p$ . However, please note that high flow velocities may cause cavitation, especially at low static pressure. See paragraph 6.5 for further details on operating pressure.

## **9** Temperature sensors

MULTICAL<sup>®</sup> 402 is available with inputs for either Pt100 or Pt500 temperature sensors according to EN 60751 (DIN/IEC 751). A Pt100 or Pt500 temperature sensor respectively is a platinum sensor, of which the nominal ohmic resistance is 100.000  $\Omega$  and 500.000  $\Omega$  at 0.00°C and 138.506  $\Omega$  and 692.528  $\Omega$  at 100.00°C respectively. All ohmic resistance values are laid down in the international standard IEC 751, applying to Pt100 temperature sensors. The ohmic resistance values of Pt500 sensors are five times higher. The tables below include resistance values for each degree celcius in [ $\Omega$ ] for both Pt100 and Pt500 sensors:

|     | Pt100   |         |         |         |         |         |         |         |         |         |
|-----|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| °C  | 0       | 1       | 2       | 3       | 4       | 5       | 6       | 7       | 8       | 9       |
| 0   | 100.000 | 100.391 | 100.781 | 101.172 | 101.562 | 101.953 | 102.343 | 102.733 | 103.123 | 103.513 |
| 10  | 103.903 | 104.292 | 104.682 | 105.071 | 150.460 | 105.849 | 106.238 | 106.627 | 107.016 | 107.405 |
| 20  | 107.794 | 108.182 | 108.570 | 108.959 | 109.347 | 109.735 | 110.123 | 110.510 | 110.898 | 111.286 |
| 30  | 111.673 | 112.060 | 112.447 | 112.835 | 113.221 | 113.608 | 113.995 | 114.382 | 114.768 | 115.155 |
| 40  | 115.541 | 115.927 | 116.313 | 116.699 | 117.085 | 117.470 | 117.856 | 118.241 | 118.627 | 119.012 |
| 50  | 119.397 | 119.782 | 120.167 | 120.552 | 120.936 | 121.321 | 121.705 | 122.090 | 122.474 | 122.858 |
| 60  | 123.242 | 123.626 | 124.009 | 124.393 | 124.777 | 125.160 | 125.543 | 125.926 | 126.309 | 126.692 |
| 70  | 127.075 | 127.458 | 127.840 | 128.223 | 128.605 | 128.987 | 129.370 | 129.752 | 130.133 | 130.515 |
| 80  | 130.897 | 131.278 | 131.660 | 132.041 | 132.422 | 132.803 | 133.184 | 133.565 | 133.946 | 134.326 |
| 90  | 134.707 | 135.087 | 135.468 | 135.848 | 136.228 | 136.608 | 136.987 | 137.367 | 137.747 | 138.126 |
| 100 | 138.506 | 138.885 | 139.264 | 139.643 | 140.022 | 140.400 | 140.779 | 141.158 | 141.536 | 141.914 |
| 110 | 142.293 | 142.671 | 143.049 | 143.426 | 143.804 | 144.182 | 144.559 | 144.937 | 145.314 | 145.691 |
| 120 | 146.068 | 146.445 | 146.822 | 147.198 | 147.575 | 147.951 | 148.328 | 148.704 | 149.080 | 149.456 |
| 130 | 149.832 | 150.208 | 150.583 | 150.959 | 151.334 | 151.710 | 152.085 | 152.460 | 152.835 | 153.210 |
| 140 | 153.584 | 153.959 | 154.333 | 154.708 | 155.082 | 155.456 | 155.830 | 156.204 | 156.578 | 156.952 |
| 150 | 157.325 | 157.699 | 158.072 | 158.445 | 158.818 | 159.191 | 159.564 | 159.937 | 160.309 | 160,682 |
| 160 | 161.054 | 161.427 | 161.799 | 162.171 | 162.543 | 162.915 | 163.286 | 163.658 | 164.030 | 164.401 |

Pt100, IEC 751 Amendment 2-1995-07

Table 8

|     | Pt500   |         |         |         |         |         |         |         |         |         |
|-----|---------|---------|---------|---------|---------|---------|---------|---------|---------|---------|
| °C  | 0       | 1       | 2       | 3       | 4       | 5       | 6       | 7       | 8       | 9       |
| 0   | 500.000 | 501.954 | 503.907 | 505.860 | 507.812 | 509.764 | 511.715 | 513.665 | 515.615 | 517.564 |
| 10  | 519.513 | 521.461 | 523.408 | 525.355 | 527.302 | 529.247 | 531.192 | 533.137 | 535.081 | 537.025 |
| 20  | 538.68  | 540.910 | 542.852 | 544.793 | 546.733 | 548.673 | 550.613 | 552.552 | 554.490 | 556.428 |
| 30  | 558.365 | 560.01  | 562.237 | 564.173 | 566.107 | 568.042 | 569.975 | 571.908 | 573.841 | 575.773 |
| 40  | 577.704 | 579.635 | 581.565 | 583.495 | 585.424 | 587.52  | 589.280 | 591.207 | 593.134 | 595.060 |
| 50  | 596.986 | 598.911 | 600.835 | 602.759 | 604.82  | 606.605 | 608.527 | 610.448 | 612.369 | 614.290 |
| 60  | 616.210 | 618.129 | 620.047 | 621.965 | 623.883 | 625.800 | 627.716 | 629.632 | 631.547 | 633.462 |
| 70  | 635.376 | 637.289 | 639.202 | 641.114 | 643.026 | 644.937 | 646.848 | 648.758 | 650.667 | 652.576 |
| 80  | 654.484 | 656.392 | 658.299 | 660.205 | 662.111 | 664.017 | 665.921 | 667.826 | 669.729 | 671.632 |
| 90  | 673.535 | 675.437 | 677.338 | 679.239 | 681.139 | 683.038 | 684.937 | 686.836 | 688.734 | 690.631 |
| 100 | 692.528 | 694.424 | 696.319 | 698.214 | 700.108 | 702.002 | 703.896 | 705.788 | 707.680 | 709.572 |
| 110 | 711.463 | 713.353 | 715.243 | 717.132 | 719.021 | 720.909 | 722.796 | 724.683 | 726.569 | 728.455 |
| 120 | 730.40  | 732.225 | 734.109 | 735.992 | 737.875 | 739.757 | 741.639 | 743.520 | 745.400 | 747.280 |
| 130 | 749.160 | 751.038 | 752.917 | 754.794 | 756.671 | 758.548 | 760.424 | 762.299 | 764.174 | 766.048 |
| 140 | 767.922 | 769.795 | 771.667 | 773.539 | 775.410 | 777.281 | 779.151 | 781.020 | 782.889 | 784.758 |
| 150 | 786.26  | 788.493 | 790.360 | 792.226 | 794.091 | 795.956 | 797.820 | 799.684 | 801.547 | 803.410 |
| 160 | 805.272 | 807.133 | 808.994 | 810.855 | 812.714 | 814.574 | 816.432 | 818.290 | 820.148 | 822.004 |

Pt100, IEC 751 Amendment 2-1995-07

Table 9

## 9.1 Sensor types

|                                          | Туре | 402- |  |    |
|------------------------------------------|------|------|--|----|
| Pt500 sensor set                         |      |      |  |    |
| No sensor set                            |      |      |  | 00 |
| Pocket sensor set with 1.5 m cable       |      |      |  | 0A |
| Pocket sensor set with 3.0 m cable       |      |      |  | 0B |
| Short direct sensor set with 1.5 m cable |      |      |  | 0F |
| Short direct sensor set with 3.0 m cable |      |      |  | 0G |

### 9.2 Cable influence

#### 9.2.1 2-wire sensor set

Usually small and medium-size heat meters just need temperature sensors with relatively short cable lengths. Thus, 2-wire sensor sets can be used with advantage.

Cable lengths and cross sections of the two sensors which are used as temperature sensor set for a heat meter must always be identical, and must neither be shortened nor extended.

The limitations connected to the use of 2-wire sensor sets according to prEN 1434-2:2009 appear from the table below.

|                                           | Pt100 s                  | sensors                                             | Pt500 sensors |                               |  |
|-------------------------------------------|--------------------------|-----------------------------------------------------|---------------|-------------------------------|--|
| Cable cross<br>section [mm <sup>2</sup> ] | Max. cable length<br>[m] | Max. cable length Temperature<br>[m] increase [K/m] |               | Temperature<br>increase [K/m] |  |
|                                           |                          | Copper @ 20 ℃                                       |               | Copper @ 20℃                  |  |
| 0.25                                      | 2.5                      | 0.450                                               | 12.5          | 0.090                         |  |
| 0.50                                      | 5.0                      | 0.200                                               | 25.0          | 0.040                         |  |

Table 10

Kamstrup supply Pt500 sensor sets with up to 10 m cable (2 x 0.25 mm<sup>2</sup>)

### 9.3 Installation

#### 9.3.1 Electrical connection

The two paired 2-wire sensors must be mounted in terminals 5 and 6 (T1), and 7 and 8 (T2). The polarity of temperature sensors T1 and T2 is unimportant.

See the position of the terminals below:

|    | Terminal no. | Standard heat and cooling measurement |
|----|--------------|---------------------------------------|
| T1 | 5-6          | Sensor in forward pipe (red)          |
| T2 | 7-8          | Sensor in return pipe (blue)          |



### 9.4 Pocket sensors

The pocket sensor is a Pt500 cable sensor, constructed with 2-wire silicone cable and closed with a D 5.8 mm shrunk on stainless steel tube which protects the sensor element.

The steel tube is mounted in a sensor pocket (immersion pipe) which has an inner diameter of 6 mm and an outer diameter of 8 mm. Sensor pockets are available with  $R^{1/2}$  (conical  $\frac{1}{2}$ ") connection in stainless steel and in lengths of 65, 90 and 140 mm. The sensor construction with separate immersion pipe permits replacement of sensors without having to cut off the flow. Furthermore, the wide range of immersion pipe lengths ensures that the sensors can be mounted in all existing pipe dimensions.



The plastic tube on the sensor cable is placed on a level with the sealing screw, which is lightly tightened with your fingers.

Figure 18

Figure 19

The stainless steel pockets can be used for mounting in PN25 systems!

### 9.5 Pt500 short direct sensor set

The Pt500 short direct sensor has been constructed according to the European heat meter standard EN 1434-2. The sensor has been designed for direct mounting in the measuring medium, i.e. without sensor pocket, whereby a very fast response to temperature changes from e.g. domestic water exchangers is obtained.

The sensor is based on two-wire silicone cable. The sensor pipe is made of stainless stell and has a diameter of 4 mm at the point where the sensor element is placed. Furthermore, it can be immediately mounted in many flow sensor types which reduces the installation costs.

pipe installations.



Figure 20



Furthermore, the short direct sensor can be mounted by means of a  $R^{1/2}$  or  $R^{3/4}$  for M10 nipple in a standard 90° tee.

The sensor can be mounted in special teepieces, which are available for  $\frac{1}{2}$ ,  $\frac{3}{4}$ " and 1"





In order to obtain the best possible serviceability during meter replacement the short direct sensor can be placed in a ball valve with sensor socket.

Ball valves with sensor socket are available in G1/2, G3/4 and G1.

| ltem | 6556-474 | 6556-475 | 6556-476 |
|------|----------|----------|----------|
|      | G1⁄2     | G³⁄4     | G1       |

Max. 130°C and PN16

Figure 22

# **10 Power supply**

MULTICAL<sup>®</sup> 402 must always be internally supplied with 3.6 VDC ( $\pm$  0.1 VDC) via the built-in supply plug.

|                       | Туре | 402- |  |   |
|-----------------------|------|------|--|---|
| Supply                |      |      |  |   |
| No module             |      |      |  | 0 |
| Battery, 2 x AA       |      |      |  | 1 |
| Battery, D-cell       |      |      |  | 2 |
| 230 VAC supply module |      |      |  | 7 |
| 24 VAC supply module  |      |      |  | 8 |

The four above-mentioned supply modules are included in the comprehensive type test, to which MULTICAL<sup>®</sup> 402 has been subjected. Within the framework of the type approval, the CE-declaration and the manufacturer's guarantee no other types of power supplies than the ones listed above can be used.

Note: MULTICAL<sup>®</sup> 402 cannot be supplied by 24 VDC.

### **10.1** Built-in 2 x AA-cell lithium battery

The 2 x AA-cell lithium battery is in most applications sufficient to power MULTICAL<sup>®</sup> 402 throughout an operating period of 6 years (see paragraph 10.3).



Note: AA-cell lithium batteries include approx. 0.7 g lithium each and are therefore <u>not</u> comprised by transport restrictions.

### 10.2 Built-in D-cell lithium battery

A D-cell lithium battery should be selected for MULTICAL<sup>®</sup> 402 when you require the longest possible battery lifetime. Depending on the application in question the D-cell can power MULTICAL<sup>®</sup> 402 for up to 16 years (see paragraph 10.4).



Note: D-cell lithium batteries include approx. 4.5 g lithium each and are therefore comprised by transport restrictions. See document 5510-408\_DK-GB-DE for further details on transportation of lithium batteries.

## 10.3 Battery lifetimes of 2 x AA-cell

Estimated battery lifetime in years

|                                                     | Normal resp    | oonse (24 s.)  | Fast response (4 s.) |                |  |
|-----------------------------------------------------|----------------|----------------|----------------------|----------------|--|
| 2 x AA-cell battery pack                            | Wall mounted   | Pipe mounted   | Wall mounted         | Pipe mounted   |  |
| , <b></b> , <b></b> , <b></b> ,                     | Battery < 30°C | Battery < 40°C | Battery < 30°C       | Battery < 40°C |  |
| 402-0-00                                            |                |                |                      |                |  |
| Without module                                      | 6              | 5              | -                    | -              |  |
|                                                     |                |                |                      |                |  |
| 402-0-10                                            | Monthly: 6     | Monthly: 5     |                      |                |  |
| Data + 2 pulse inputs (VA, VB)                      | Daily: 6       | Daily: 5       |                      |                |  |
|                                                     | Hourly: -      | Hourly: -      | -                    | -              |  |
|                                                     | Min.: -        | Min.: -        |                      |                |  |
| 402-0-11                                            |                |                |                      |                |  |
| Data + 2 pulse outputs (CE, CV)                     | -              | -              | -                    | -              |  |
|                                                     |                |                |                      |                |  |
| 402-0-20                                            | Monthly: 6     | Monthly: 5     |                      |                |  |
| M-Bus + 2 pulse inputs (VA, VB)                     | Daily: 6       | Daily: 5       |                      | -              |  |
|                                                     | Hourly: -      | Hourly: -      |                      |                |  |
|                                                     | Min.: -        | Min.: -        |                      |                |  |
| 402-0-21                                            | -              | -              | -                    | -              |  |
| M-Bus + 2 pulse outputs (CE, CV)                    |                |                |                      |                |  |
| 402-0-29                                            | Monthly: 6     | Monthly: 5     |                      |                |  |
| M-Bus + 2 pulse inputs (VA, VB),                    | Daily: 6       | Daily: 5       | -                    | -              |  |
| MCIII Data Package                                  | Hourly: -      | Hourly: -      |                      |                |  |
|                                                     | Min.: -        | Min.: -        |                      |                |  |
| 402-0-30/31/35/38                                   |                |                |                      |                |  |
| Wireless M-Bus, EU, 868 MHz, Mode C1                |                |                |                      |                |  |
| Wireless M-Bus, EU, 868 MHz, Mode T1 OMS (Ind. Key) | 6              | 5              | -                    | -              |  |
| Wireless M-Bus, FU, 868 MHz, Mode C1 (Ind.          | Ŭ              |                |                      |                |  |
| Key) Alt. Reg . +VA, VB                             |                |                |                      |                |  |
| Wireless M-Bus, C1, Fixed Network, (Ind. Key)       |                |                |                      |                |  |
| 402-0-37                                            |                |                |                      |                |  |
| Wireless M-Bus, EU, 868 MHz, Mode T1                | -              | -              | -                    | -              |  |
|                                                     |                |                |                      |                |  |
| 402-0-40/41 (By hand-held systems)                  | -              | -              | -                    | -              |  |
| Radio, EU, 434 MHz, Int. ant.                       |                |                |                      |                |  |
| 402-0-42/44                                         |                |                |                      |                |  |
| Radio, EU, 434 MHz, Int.+ext. ant.+                 | -              | -              | -                    | -              |  |
|                                                     |                |                |                      |                |  |
| 402-0-43/43<br>Dadia Ell 424 MHz intratt ant        |                |                |                      |                |  |
| Kaulo, EU, 434 MHZ, IIII.+EXI. ant +                | -              | -              | -                    | -              |  |
|                                                     |                |                |                      |                |  |
| 4U2-U-5U/52/54/50                                   |                |                |                      |                |  |
| Kaulo, SE, 444 MHZ, INT. ant./ ext. ant. +          | -              | -              | -                    | -              |  |
| 2 pulse inputs (VA, VB)                             |                |                |                      |                |  |

## 10.4 Battery lifetimes of D-cell

#### Estimated battery lifetime in years

|                                                                    | Normal r       | esponse (24 s.) | Fast re        | Fast response (4 s.) |  |  |
|--------------------------------------------------------------------|----------------|-----------------|----------------|----------------------|--|--|
| D-cell battery                                                     | Wall mounted   | Pipe mounted    | Wall mounted   | Pipe mounted         |  |  |
|                                                                    | Battery < 30°C | Battery < 40°C  | Battery < 30°C | Battery < 40°C       |  |  |
| 402-0-00                                                           | 16             | 12              | 8              | 6                    |  |  |
| Without module                                                     |                |                 |                | -                    |  |  |
| 402-0-10                                                           | Monthly: 16    | Monthly: 12     | Monthly: 8     | Monthly: 6           |  |  |
| Data + 2 pulse inputs (VA, VB)                                     | Daily: 16      | Daily: 12       | Daily: 8       | Daily: 6             |  |  |
|                                                                    | Hourly: 12     | Hourly: 10      | Hourly: 6      | Hourly: 5            |  |  |
|                                                                    | Min.: -        | Min.: -         | Min.: -        | Min.: -              |  |  |
| 402-0-11                                                           | Monthly: 10    | Monthly: 8      |                |                      |  |  |
| Data + 2 pulse outputs (CE, CV) *)                                 | Daily: 8       | Daily: 6        | _              |                      |  |  |
|                                                                    | Hourly: 6      | Hourly: 5       |                |                      |  |  |
|                                                                    | Min.: -        | Min.: -         |                |                      |  |  |
| 402-0-20                                                           | Monthly: 16    | Monthly: 12     | Monthly: 8     | Monthly: 6           |  |  |
| M-Bus + 2 pulse inputs (VA, VB)                                    | Daily: 16      | Daily: 12       | Daily: 8       | Daily: 6             |  |  |
|                                                                    | Hourly: 12     | Hourly: 10      | Hourly: 6      | Hourly: 5            |  |  |
|                                                                    | Min.: -        | Min.: -         | Min.: -        | Min.: -              |  |  |
| 402-0-21                                                           | Monthly: 10    | Monthly: 8      |                |                      |  |  |
| M-Bus + 2 pulse outputs (CE, CV)*)                                 | Daily: 8       | Daily: 6        |                |                      |  |  |
|                                                                    | Hourly: 6      | Hourly: 5       | -              | -                    |  |  |
|                                                                    | Min.: -        | Min.: -         |                |                      |  |  |
| 402-0-29                                                           | Monthly: 16    | Monthly: 12     | Monthly: 8     | Monthly: 6           |  |  |
| M-Bus + 2 pulse inputs (VA, VB), MCIII Data Package                | Daily: 16      | Daily: 12       | Daily: 8       | Daily: 6             |  |  |
|                                                                    | Hourly: 12     | Hourly: 10      | Hourly: 6      | Hourly: 5            |  |  |
|                                                                    | Min.: -        | Min.: -         | Min.: -        | Min.: -              |  |  |
| 402-0-30/31/35/38                                                  |                |                 |                |                      |  |  |
| Wireless M-Bus, EU, 868 MHz, Mode C1                               |                |                 |                |                      |  |  |
| Wireless M-Bus, EU, 868 MHz, Mode T1 OMS (Ind. Key)                | 16             | 12              | 8              | 6                    |  |  |
| Wireless M-Bus, EU, 868 MHz, Mode C1 (Ind. Key) Alt. Reg . +VA, VB |                |                 |                |                      |  |  |
| Wireless M-Bus, C1, Fixed Network, (Ind. Key)                      |                |                 |                |                      |  |  |
| 402-0-37                                                           | 11             | 8               | 6              | 5                    |  |  |
| Wireless M-Bus, EU, 868 MHz, Mode T1 (Common Key)                  |                |                 |                |                      |  |  |
| 402-0-40/41 (By hand-held systems)                                 | Monthly: 12    | Monthly: 10     | Monthly: 6     | Monthly: 5           |  |  |
| Radio, EU, 434 MHz, int. ant.                                      | Daily: 11      | Daily: 9        | Daily: 5       | Daily: 4             |  |  |
|                                                                    | Hourly: -      | Hourly: -       | Hourly: -      | Hourly: -            |  |  |
|                                                                    | Min.: -        | Min.: -         | Min.: -        | Min.: -              |  |  |
| 402-0-42/44                                                        | Monthly: 12    | Monthly: 10     | Monthly: 6     | Monthly: 5           |  |  |
| Radio, EU, 434 MHz, int.+ext. ant.+                                | Daily: 11      | Daily: 9        | Daily: 5       | Daily: 4             |  |  |
| 2 pulse inputs (VA, VB)                                            | Hourly: -      | Hourly: -       | Hourly: -      | Hourly: -            |  |  |
|                                                                    | Min.: -        | Min.: -         | Min.: -        | Min.: -              |  |  |
| 402-0-43/45                                                        | Monthly: 8     | Monthly: 6      |                |                      |  |  |
| Radio, EU, 434 MHz, int.+ext. ant +                                | Daily: 7       | Daily: 5        |                | -                    |  |  |
| 2 pulse outputs (CE, CV) *)                                        | Hourly: -      | Hourly: -       |                |                      |  |  |
|                                                                    | Min.: -        | Min.: -         |                |                      |  |  |
| 402-0-50/52/54/56                                                  | Monthly: 12    | Monthly: 10     | Monthly: 6     | Monthly: 5           |  |  |
| Radio, SE, 444 MHz, int. ant./ ext. ant. +                         | Daily: 11      | Daily: 9        | Daily: 5       | Daily: 4             |  |  |
| 2 pulse inputs (VA, VB)                                            | Hourly: -      | Hourly: -       | Hourly: -      | Hourly: -            |  |  |
|                                                                    | Min.: -        | Min.: -         | Min.: -        | Min.: -              |  |  |

\*) –Pulse duration: 32 ms. -Standard CCC-code –Average flow: 30% of qp –Average cooling: < 40 K Operating conditions influence the battery lifetime. Please contact Kamstrup for further information.

### 10.5 Supply Module 230 VAC

This PCB module is galvanically separated from the mains voltage and is suitable for direct 230 V mains installation. The module includes a double-chamber safety transformer, which fulfils the double-isolation requirements when the calculator top is mounted. The power consumption is less than 1 VA/1 W.



National regulations for electric installations must be observed. The 230 VAC module can be connected/disconnected by the utility's personnel, whereas the fixed 230 V installation into the meter panel must be carried out by an authorized electrician.

### 10.6 Supply Module 24 VAC

This PCB module is galvanically separated from the 24 VAC mains supply and is both suitable for industrial installations with joint 24 VAC supply and individual installations, which are supplied by a separate 230/24 V safety transformer in the meter panel. The module includes a double-chamber safety transformer, which fulfils the double-isolation requirements when the calculator top is mounted. The power consumption is less than 1 VA/1 W.



National regulations for electric installations must be observed. The 24 VAC module can be connected/disconnected by the heating station's personnel, whereas the fixed 230/24 V installation in the meter panel must only be carried out by an authorized electrician.
The module is specially suited for installation together with a 230/24 V safety transformer, e.g. type 66-99-403, which can be installed in the meter panel <u>before</u> the safety relay. When the transformer is used the total power consumption of the meter incl. the 230/24 V transformer will be lower than 1.7 W.



# 10.7 Change of supply unit

The supply unit for MULTICAL<sup>®</sup> 402 can be changed from mains supply to battery or visa versa as the needs of the utility change. Thus, it can be an advantage to change mains supplied meters to battery meters in buildings under construction where the mains supply can be unstable or periodically missing.

The change from battery to mains supply does <u>not</u> require reprogramming as MULTICAL<sup>®</sup> 402 does not include an information code for outworn battery.

# 10.8 Mains cables

 $MULTICAL^{\mbox{\ensuremath{\mathbb{R}}}}$  402 is available with 1.5 m mains cable, type "H05 VV-F" for either 24 VAC or 230 VAC. Mains cables with copper conductors and a conductor cross section of 2 x 0.75 mm<sup>2</sup> must be connected via a max. 6 A fuse.



Mains cable, type 5000-286 (2 x 0.75 mm<sup>2</sup>)

"H05 VV-F" is the designation of a strong PVC mantle, which withstands max. 70°C. Therefore, the mains cable must be installed with sufficient distance to hot pipes etc.

# **10.9** Danish regulations for the connection of mains operated meters

# Installation to electric mains operated equipment for consumption registration (<u>www.sik.dk</u>, safety notification electric services no. 27/09, February 2009).

The consumption of energy and resources (electricity, heat, gas and water) of the individual consumer is to an increasing extent registered by electronic meters, and often equipment for remote reading and remote control of both electronic and non-electronic meters is used.

General regulations for carrying out installations must be observed. However, the following modifications are permitted:

• If meter or equipment for remote reading or remote control is double-isolated, it is not necessary to run the protective conductor all the way to the connection point. This also applies if the connection point is a plug socket provided that it is placed in a canning which is sealable or can be opened with key or tool only.

If meter or equipment used for remote reading and remote control is connected to a safety transformer mounted in the panel and direct connected to the branch conductor, no on-off switch or separate overcurrent protection in either primary or secondary circuit is required, provided that the following conditions are fulfilled:

- The safety transformer must either be inherently short-circuit-proof or fail-safe
- The conductor of the primary circuit must either be short-circuit protected by the overcurrent protection of the branch conductor or short-circuit safely run.
- The conductor of the secondary circuit must have a cross section of at least 0.5 mm<sup>2</sup> and a current value which exceeds the absolute maximum current deliverable by the transformer
- It must be possible to separate the secondary circuit, either by separators, or it must appear from the installation instructions that the secondary circuit can be disconnected at the transformer's terminals

### **General information**

Work on the fixed installation, including any intervention in the group panel, must be carried out by an authorized electrician.

It is not required that service work on equipment comprised by this notification as well as connection and disconnection of the equipment outside the panel is carried out by an authorized electrician. These tasks can also be carried out by persons or companies, who professionally produce, repair or maintain equipment if only the person carrying out the work has the necessary expert knowledge.

# **11** Communication Modules

Plug-in modules can be mounted in the module area of MULTICAL<sup>®</sup> 402. In this way the meter can be adapted to various applications.

All plug-in modules are included in the comprehensive type test, to which MULTICAL<sup>®</sup> 402 has been subjected. Within the framework of the type approval, the CE-declaration and the manufacturer's guarantee no other types of plug-in modules than the ones listed below can be used.

Plug-in modules are available in three versions:

- without pulse inputs/outputs
- with pulse output for energy (CE) and volume (CV)
- with pulse inputs (VA and VB) for accumulation of pulses from e.g. water meters

Reconfiguration between pulse inputs and pulse outputs is not necessary with MULTICAL<sup>®</sup> 402. When a module with pulse outputs is mounted in MULTICAL<sup>®</sup> 402, the meter will automatically be configured for pulse outputs. When a module with pulse inputs is mounted in MULTICAL<sup>®</sup> 402, the meter will automatically be configured for pulse for pulse inputs.

# **11.1 Communication Modules**

|                                                         | Туре       | 402- |    |
|---------------------------------------------------------|------------|------|----|
| Modules                                                 |            |      |    |
| No module                                               |            |      | 00 |
| Data + 2 pulse inputs (VA, VB)                          |            |      | 10 |
| Data + 2 pulse outputs (CE, CV)                         |            |      | 11 |
| M-Bus + 2 pulse inputs (VA, VB)                         |            |      | 20 |
| M-Bus + 2 pulse outputs (CE, CV)                        |            |      | 21 |
| M-Bus + 2 pulse inputs (VA, VB), MCIII Data Package     |            |      | 29 |
| Wireless M-Bus, EU, 868 MHz, Mode C1 (Ind. Key)         |            |      | 30 |
| Wireless M-Bus, EU, 868 MHz, Mode T1 OMS (Ind. Key      | ()         |      | 31 |
| Wireless M-Bus, EU, 868 MHz, Mode C1 (Ind. Key) Alt.    | Reg . +V   | A,VB | 35 |
| Wireless M-Bus, EU, 868 MHz, Mode 11 (Common Key        | )          |      | 37 |
| Wireless M-Bus, C1, Fixed Network, (Ind. Key)           |            |      | 38 |
| Radio, EU, 434 MHz, Int. Ant., NETO                     |            |      | 40 |
| Radio, EU, 434 MHz, Int. Ant., NET1                     |            |      | 41 |
| Radio, EU, 434 MHz, Int.+Ext. Ant., NE10 + 2 pulse inpu | uts (VA, V | /B)  | 42 |
| Radio, EU, 434 MHz, Int.+Ext. Ant., NE10 + 2 pulse out  | puts (CE,  | CV)  | 43 |
| Radio, EU, 434 MHZ, Int.+Ext. Ant., NET1 + 2 pulse inpl | Jts (VA, V | /B)  | 44 |
| Radio, EU, 434 MHz, Int.+Ext. Ant., NE11 + 2 pulse out  | puts (CE,  | CV)  | 45 |
| Radio, SE, 444 MHZ, Int. Ant., NET0 + 2 pulse inputs (V | A, VB)     |      | 50 |
| Radio, SE, 444 MHz, Int. Ant., NET1 + 2 pulse inputs (V | A, VB)     |      | 52 |
| Radio, SE, 444 MHZ, EXT. Ant., NETU + 2 pulse inputs () | VA, VB)    |      | 54 |
| Radio, SE, 444 MHZ, EXT. Ant., NET1 + 2 pulse inputs (N | VA, VB)    |      | 56 |

# 11.2 Pulse outputs (CE and CV)

The pulse duration of pulse outputs for energy and volume can be ordered at 32 ms. or 0.1 s. After delivery the pulse duration can be changed by means of the PC program METERTOOL (see paragraph 14) The resolution of the pulse outputs always follows the least significant digit of the energy and volume readings respectively (see CCC-codes, paragraph 3.3.1).

The pulse outputs can be configured under the country code to display one of the following registers per pulse output:

E1 (Heat energy)

E3 (Cooling energy)

V1 (Volume)

TA2 (Totalized energy or volume)

TA3 (Totalized energy or volume)

The pulse output readings cannot be changed after configuration.

The pulse outputs have been configured with the following default values:

| Meter function     | Output C (16-17) - CE | Output D (18-19) - CV | Country codes            |
|--------------------|-----------------------|-----------------------|--------------------------|
| Verification mode* | E1 and E3**           | V1                    | All                      |
| Heat meter         | E1                    | V1                    | 1XX<br>2XX<br>4XX<br>9XX |
| Heat meter         | E1                    | E3                    | 3XX                      |
| Cooling meter      | E3                    | V1                    | 5XX                      |
| Heat/cooling meter | E1                    | E3                    | 6XX                      |
| Volume meter       | V1                    | V1                    | 7XX<br>8XX               |

\*) The pulse outputs are not configurable in verification mode

\*\*) All measured energy is emitted as pulses

The original configuration of the pulse duration (see paragraph 3.7) is maintained. The pulse resolution remains unchanged both in verification mode and in normal mode.

The pulse resolution follows the display (determined by the CCC-code). For example CCC=119: 1 pulse/kWh and 1 pulse/0.01  $m^3$ 



The pulse outputs are designed with darlington optocouplers, which makes them suitable for most signal types. Please note the polarity when making the connection. See paragraph 2.2 re electrical data of the pulse outputs.

# 11.3 Pulse inputs VA and VB

The pulse inputs are physically placed on the plug-in modules and are well suited for the collection of pulses from e.g. water meters with Reed switch output or water meters with electronic pulse output.



## **1**) Water meter with Reed switch output

Pulse inputs VA and VB are bounce damped and therefore well suited for receiving signals from a Reed switch. The Reed switch output often has a built-in resistance (Rr) in order to protect the Reed switch itself. Pulse inputs VA and VB function with Rr values up to  $10 \text{ k}\Omega$ .

## **2**) Water meter with electronic pulse output

The pulse inputs are also well suited for receiving signals from a water meter with electronic pulse output of min. 30 ms. pulse duration. The pulse inputs must have a "LOW" level of  $\leq$  0.4 V and a "HIGH" level of  $\geq$  2.5 V. If the electronic pulse output has a polarity safety, it should be fitted with a Schottky-diode, and a possible serial resistor (Re) should be max.500  $\Omega$ .

The inputs are configured via the FF and GG codes as shown in the table in paragraph 3.6. In the absence of other information from the customer the inputs will be configured as FF=24 and GG=24 (10 l/pulse). After delivery the FF and GG codes can be changed by means of the PC program METERTOOL (see paragraph 14)

# 11.4 Modules

## 11.4.1 Data + pulse inputs (type: 402-0-10) (PCB 5550-1025)

The module has a galvanically separated data port which interoperates with the KMP protocol (see paragraph 12). The data output can be used for e.g. connection of external communication units or other hardwired data communication which it is not expedient to carry out via optical communication on the meter's front.

See paragraph 11.1.2 Pulse inputs VA and VB concerning the function of the pulse inputs.

The module includes data connection, which can e.g. be used for the external reading plug meant for Kamstrup's hand-held terminal or hardwiring of PC connection.

The data connection is galvanically isolated by optocouplers, which makes it necessary to use data cable type 66-99-105 or 66-99-106 in order to adapt the signal to RS232 level which suits a PC or Kamstrup's hand-held terminal.

See paragraph 12. *Data Communication* for information on data sequences and protocols. If the computer does not have a COM-port, data cable with USB type 66-99-098 can be used.





## 11.4.2 Data + pulse outputs (type: 402-0-11) (PCB 5550-1026)

See paragraph 11.4.1 re data connection and paragraph 11.2 re pulse outputs.



## 11.4.3 M-Bus + pulse inputs (type: 402-0-20) (PCB 5550-1030)

The M-bus module is powered through the M-bus network and is thus independent of the meter's internal supply. Two-way communication between M-bus and energy meter is carried out via optocouplers providing galvanic separation between M-bus and meter. The module supports both primary, secondary and enhanced secondary addressing. The module can communicate at communication speeds of 300, 2400 or 9600 baud and automatically detects the speed used.



See paragraph 11.3 Pulse inputs VA and VB concerning the function of the pulse inputs.

### 11.4.4 M-Bus + pulse outputs (type: 402-0-21) (PCB 55501007)

The M-bus module is powered through the M-bus network and is thus independent of the meter's internal supply. Two-way communication between M-bus and energy meter is carried out via optocouplers providing galvanic separation between M-bus and meter. The module supports both primary, secondary and enhanced secondary addressing. The module can communicate at communication speeds of 300, 2400 or 9600 baud and automatically detects the speed used.



See paragraph 11.2 re the pulse outputs.

### 11.4.5 M-Bus module with MC-III data package + pulse inputs (402-00-29) (PCB 5550-1140)

The M-Bus module 670029 comprises the same data packet as M-Bus module 6604 for MC III/66-C and module 660S for MCC/MC 401.

The module can e.g. be used together with the old M-Bus master with display, old regulators and old reading systems not supporting the newer M-Bus modules.



### 11.4.6 Wireless M-Bus (Type: 402-0-30 and 402-0-35) (PCB 5550-1029/1203)

The Wireless M-Bus module has been designed to form part of Kamstrup's hand-held Wireless M-Bus Reader system, which operates in the licence-free frequency band in the 868 MHz area.

The communication protocol is in C-mode according to the standard EN13757-4.

The Wireless M-Bus module supports individual encryption and comes fitted with internal antenna as well as connection for external antenna.

Module 402-0-35 has two pulse inputs VA and VB.



### 11.4.7 Wireless M-Bus (Type: 402-0-31) (PCB - 5550-1387)

The Wireless M-Bus module has been developed to be integrated in an "Open Metering System" (OMS) solution without further configuration, and operates within the unlicensed frequency band in the 868 MHz area.

The communication protocol is T-mode according to OMS specifications: Volume 2: Primary Communication Version 4.0.2, and the module uses one-way communication, data being automatically sent from the meter every 15 minutes after installation.

The T1 OMS module supports individual encryption and comes with internal antenna as well as MCX connection for external antenna.

Photo see above paragraph 11.4.6.

### 11.4.8 Wireless M-Bus (Type: 402-0-37) (PCB – 5550 1075)

The Wireless M-Bus module complies with the T-mode protocol of the standard EN13757-4 and operates within the licence-free frequency band in the 868 MHz area.

The Wireless M-Bus module 402-0-37 includes a common encryption key in order to secure the data from the meter.

The Wireless M-Bus module comes fitted with an internal antenna.



### 11.4.9 Wireless M-Bus (Type: 402-0-38) (PCB: 5550-1352)

The Wireless M-Bus module has been specifically developed to be integrated in a Wireless M-Bus network (Radio Link Network) and operates within the unlicensed frequency band in the 868 MHz area.

The communication protocol is C-mode according to the standard EN13757-4 and the module uses one-way communication, data being automatically sent from the meter every 96 seconds after installation.

|                                        | T |
|----------------------------------------|---|
|                                        |   |
| Te tanta 18 1 minimum 11-              |   |
| 1 11 177                               |   |
| ······································ |   |
|                                        |   |

### 11.4.10 Radio (Type: 402-0-40 and 402-0-41) (PCB 5550-1040)

These radio modules are your first choice for reading via Kamstrup's hand-held reading systems, e.g. USB Meter Reader and hand-held terminal MT Pro, which operate in the licence-free frequency band in the 434 MHz area.

The radio module comes fitted with internal antenna.

| Nijerije+ |
|-----------|
|           |
|           |
|           |
| 2221040-0 |

### 11.4.11 Radio (Type: 402-0-42 and 402-0-44) (PCB 5550-1072)

The radio modules have been optimized to form part of a Kamstrup radio network system, which operates in the licence-free frequency band in the 434 MHz area, but can also be used for the hand-held reading systems in the same frequency area.

The radio module comes fitted with internal antenna as well as connection for external antenna and two pulse inputs.

See paragraph 11.2 re. the pulse outputs.

| •• -       |                       |
|------------|-----------------------|
| <b>2-2</b> | 318 på på 🕈 🚛 🚳 🎖 🖓 👘 |
|            | 00 Lanam 2 5+5        |
| Ľ          |                       |

### 11.4.12 Radio (Type: 402-0-43 and 402-0-45) (PCB 5550-1072/1074)

The radio modules have been optimized to form part of a Kamstrup radio network system, which operates in the licence-free frequency band in the 434 MHz area, but can also be used for the hand-held reading systems in the same frequency area.

The radio module comes fitted with internal antenna as well as connection for external antenna and two pulse outputs.

See paragraph 11.2 re the pulse outputs.



### 11.4.13 Radio (Type 402-0-50, 402-0-52, 402-0-54 and 402-0-56) (PCB 5550-1060/1076/1077/1078)

The radio modules have been optimized to form part of Kamstrup's radio network systems but can also be used for hand-held reading systems which operate within the Swedish licence demanding frequency band in the 444 MHz area.

The radio module is available with two pulse inputs as well as optional internal antenna or connection for external antenna.





# 11.5 Mounting an external antenna



Mounting an external antenna it must be secured that the antenna cable does not become caught between the PCB and the stay of the cover. Replacing or mounting modules the meter must be without current. The same applies when mounting an external antenna.

# 11.6 Retrofitting modules

Modules for MULTICAL<sup>®</sup> 402 are also supplied separately for retrofitting. The modules are configured and ready for installation from the factory. However, some of the modules need individual configuration after installation which is possible by means of the PC program METERTOOL (see paragraph 14).

### Module

| Data + pulse inputs           | 10             |
|-------------------------------|----------------|
| Data + pulse outputs          | 11             |
| M-Bus + pulse inputs          | 20 + 29        |
| M-Bus + pulse outputs         | 21             |
| Wireless M-Bus                | 30+31          |
| Wireless M-Bus + pulse inputs | 35             |
| Wireless M-Bus                | 37+38          |
| Radio + pulse inputs          | 42+44          |
| Radio + pulse outputs         | 43+45          |
| Radio + pulse inputs          | 50+52<br>54+56 |
|                               |                |

#### Possible configuration after installation

| Pulse values of VA and VB are changed via METERTOOL.                                                                                                                                                                                                                                                                                                                                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pulse durations of CE and CV are changed via METERTOOL.                                                                                                                                                                                                                                                                                                                                                                 |
| Pulse values of VA and VB are changed via METERTOOL.<br>Primary and secondary M-Bus addresses can be changed via<br>METERTOOL or M-Bus. Furthermore, monthly logger data can<br>be selected instead of yearly logger data via M-bus.<br>Pulse durations of CE and CV are changed via METERTOOL.<br>Primary and secondary M-Bus addresses can be changed via<br>METERTOOL or M-Bus. Furthermore, monthly logger data can |
| be selected instead of yearly logger data via M-bus.                                                                                                                                                                                                                                                                                                                                                                    |
| N/A                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Pulse values of VA and VB are changed via METERTOOL.                                                                                                                                                                                                                                                                                                                                                                    |
| N/A                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Pulse values of VA and VB are changed via METERTOOL.<br>Switching between NETO and NET1 via MT Pro.                                                                                                                                                                                                                                                                                                                     |
| Pulse durations of CE and CV are changed via METERTOOL.<br>Switching between NETO and NET1 via MT Pro.                                                                                                                                                                                                                                                                                                                  |
| Pulse values of VA and VB are changed via METERTOOL.<br>Switching between NETO and NET1 via MT Pro.                                                                                                                                                                                                                                                                                                                     |

# **12 Data Communication**

# 12.1 MULTICAL<sup>®</sup> 402 Data Protocol

Internal data communication in MULTICAL<sup>®</sup> 402 is based on the Kamstrup Meter Protocol (KMP) which provides a quick and flexible reading structure and also fulfils future requirements to data reliability.

The KMP protocol is used in all Kamstrup consumption meters launched from 2006 onwards. The protocol is used for the optical eye and via plug pins for the module area. Thus, modules with e.g. M-bus interface use the KMP protocol internally and the M-bus protocol externally.

The KMP protocol has been designed to handle point to point communication in a master/slave system (e.g. a bus system) and is used for data reading of Kamstrup energy meters.

### Software and parameter protection

The meter's software has been implemented in a Flash and cannot be changed, neither deliberately nor by mistake. The legal parameters cannot be changed via data communication without breaking the legal seal and short circuiting the "total programming lock".

### Software conformity

Software check sum, based on CRC16, is available via data communication and in the display.

### Integrity and authenticity of data

All data parameters include type, measuring unit, scaling factor and CRC16 check sum. Every produced meter includes a unique identification number.

Two different formats are used in the communication between master and slave. Either a data frame format or an application acknowledgement format.

- A request from master to slave is always sent in a data frame
- The response from the slave can either be sent in a data frame or as an application acknowledgement

The data frame is based on the OSI model using the physical layer, the data link layer and the application layer.

| Number of bytes in<br>each field | 1          | 1                      | 1   | 0-?             | 2   | 1         |
|----------------------------------|------------|------------------------|-----|-----------------|-----|-----------|
| Field designation                | Start byte | Destination<br>address | CID | Data            | CRC | Stop byte |
| OSI – layer                      |            |                        | Арр | olication layer |     |           |
|                                  |            | Data link layer        |     |                 |     |           |
|                                  |            | Physical layer         |     |                 |     |           |

The protocol is based on half duplex serial synchroneous communication with setup: 8 data bits, no parity and 2 stop bits. The data bit rate is 1200 or 2400 baud. CRC16 is used in both request and response.

Data is transferred byte for byte in a binary data format, where the 8 data bits represent one byte of data.

Byte Stuffing is used for extending the value range.

# 12.1.1 Register IDs of MULTICAL<sup>®</sup> 402

| ID   | Register              | Description                                       |
|------|-----------------------|---------------------------------------------------|
| 1003 | Date                  | Current date (YYMMDD)                             |
| 1002 | Clock                 | Current hour (hhmmss)                             |
| 99   | InfoCode              | Info code register, current                       |
| 113  | InfoEventCounter      | Info event counter                                |
| 1004 | HourCounter           | Operating hour counter                            |
| 60   | Energy1               | Energy register 1: Heat energy                    |
| 63   | Energy3               | Energy register 3: Cooling energy                 |
| 97   | Energy8               | Energy register 8· [m <sup>3</sup> x T1]          |
| 110  | Energy9               | Energy register 0: [m <sup>3</sup> x T2]          |
| 68   | Volume1               | Volume register V1                                |
| 86   | Temp1                 | Current forward temperature                       |
| 87   | Temp?                 |                                                   |
| 80   | Temp1-Temp2           | Current differential temperature                  |
| 74   | Flow1                 | Current water flow                                |
| 20   | Rower1                | Current power                                     |
| 80   |                       | Input register VA                                 |
| 04   | InputA                | Input register VP                                 |
| 64   | TariffPog2            | Tariff register 2                                 |
| 65   | TariffDog2            | Tariff register 2                                 |
| 66   | TariffLimita          | Tariff limit 2                                    |
| 67   | Tarifflimit2          | Tariff limit 2                                    |
| 222  | HighPosVolumo         | High resolution volume register for test purposes |
| 155  | HighPocEporgy         | High resolution operativesister for test purposes |
| 08   |                       | Target date (reading date)                        |
| 146  | AvrTemp1(v)           | Versto-date average of T1                         |
| 140  | AvrTemp2(y)           | Vear-to-date average of T2                        |
| 1/19 | AvrTemp1(m)           | Month-to-date average of T1                       |
| 150  | AvrTemp?(m)           | Month-to-date average of T2                       |
| 229  | AutoIntT1Averrage     | T1 average above latest autointegration           |
| 230  | AutoIntT2Averrage     | T2 average above latest autointegration           |
| 123  | MaxFlow1Date(v)       | Date of this year's max.                          |
| 124  | MaxFlow1(y)           | This year's max. value                            |
| 125  | MinFlow1Date(y)       | Date of this year's min.                          |
| 126  | MinFlow1(y)           | This year's min. value                            |
| 127  | MaxPower1Date(y)      | Date of this year's max.                          |
| 128  | MaxPower1(y)          | This year's max. value                            |
| 129  | MinPower1Date(y)      | Date of this year's min.                          |
| 130  | MinPower1(y)          | This year's min. value                            |
| 138  | MaxFlow1Date(m)       | Date of this month's max.                         |
| 139  | MaxFlow1(m)           | This month's max. value                           |
| 140  | MinFlow1Date(m)       | Date of this month's min.                         |
| 141  | MinFlow1(m)           | This month's min. value                           |
| 142  | MaxPower1Date(m)      | Date of this month's max.                         |
| 143  | MaxPower1(m)          | This month's max. value                           |
| 144  | MinPower1Date(m)      | Date of this month's min.                         |
| 145  | MinPower1(m)          | This month's min. value                           |
| 152  | ProgNo                | Progam no. ABCCC                                  |
| 153  | ConfNo1               | Config no. DDDEE                                  |
| 168  | ConfNo2               | Config. no. FFGGNPP                               |
| 1001 | SerialNumber          | Serial no. (unique number of each meter)          |
| 112  | MeterNo(high)         | Customer number (8 most significant digits)       |
| 1010 | MeterNumber(low)      | Customer number (8 least significant digits)      |
| 114  | MeterNo(InputA)       |                                                   |
| 104  | MeterNo(InputB)       | Meter no. of VB                                   |
| 1005 | MeuePotDian Dei Aulur | Sultware edition                                  |
| 184  | MBUSBOTDISPYTAddr     | Primary M-Bus address                             |
| 100  | ChackSum              | Securitary M-Dus dualess                          |
| 154  | CHECKSUIII            |                                                   |

## 12.1.2 Data protocol

Utilities and other relevant companies who want to develop their own communication driver for the KMP protocol can order a demonstration program in C# (.net based) as well as a detailed protocol description (in English language).

# 12.2 Optical eye

For data communication via the optical interface an optical eye can be used. The optical eye must be located at the front of the calculator, just above the IR-diode as shown on the photo below. Please note that the optical eye contains a very powerful magnet that should be protected with the magnet protector when not in use.

Different variants of the optical eye can be found in the list of accessories (see chapter3.2.1).



## 12.2.1 Current saving at the optical eye

In order to limit the current consumption of the circuit around the IR diode, the circuit is not permanently switched on.

It is activated by either keystroke or communication via the optical eye.

The circuit remains switched on for 30 min. after end of communication or after latest keystroke.

# 13 Calibration and verification

To be able to carry out test/verification of MULTICAL<sup>®</sup> 402 with minimum time consumption the meter has a verification mode. When the meter is in verification mode, the program procedure is approx. four times faster than in normal mode (like in fast mode). Furthermore, test mode includes some extra functions which are described below.

Note: MULTICAL<sup>®</sup> 402 uses approx. twice as much current in verification mode. Under normal circumstances, however, the meter will only be in verification mode e.g. 9 hours per five years, and this is without importance for the meter's total battery lifetime.

The calculator can be calibrated either by means of "Autointegration, as described in paragraph 13.2.5, or using verification equipment type 66-99-372 /-373 together with the PC-program METERTOOL (see paragraph 14).

# 13.1 Connector

The verification and module connector is placed under the front cover and thereby sealed by the installation seal.



The upper part of the connector is used for "verification". This part is normally sealed to prevent inadvertent access.

The bottom part of the connector is used for one of the available plug-in modules for MULTICAL<sup>®</sup> 402 (see paragraph 11). The module connector is usually not sealed.

| Pin no. | Name         | Description                                                              |
|---------|--------------|--------------------------------------------------------------------------|
| 1       | V3.6         | 3.6 V internal supply on PCB. Connected to supply plug + pole via diode. |
| 2       | TEMP_R1      | Return temperature, voltage input                                        |
| 3       | TEMP_R       | Return temperature, current output                                       |
| 4       | VERIFY_CTRL  | Verification control (legal lock). NC/V3.6 = locked; GND = open          |
| 5       | NC           | Not connected                                                            |
| 6       | SUPPLY       | Power supply direct connected to supply plug + pole.                     |
| 7       | COM1_RX      | Serial communication – meter's RX                                        |
| 8       | PULSE_INOUT1 | Pulse input A/output CE, depending on IO_DEF                             |
| 9       | BAUD_SELECT  | Baud rate selector. NC/V3.6 = 1200; GND = 4800                           |
| 10      | IO_DEF       | Input/output definition. NC/V3.6 = inputs; GND =outputs                  |
| 11      | PULSE_INOUT2 | Pulse input B/output CV, depending on IO_DEF                             |
| 12      | COM1_TX      | Serial communication – meter's TX                                        |
| 13      | GND          | Ground – 0 volt                                                          |
| 14      | NC           | Not connected                                                            |
| 15      | GND          | Ground – 0 volt                                                          |
| 16      | TEMP_F       | Forward temperature, current output                                      |
| 17      | TEMP_F1      | Forward temperature, power input                                         |
| 18      | GND          | Ground – 0 volt                                                          |

# 13.2 Test – verification mode

## 13.2.1 Meter cycle

The meter can run two different measuring cycles: normal cycle and fast/verification cycle. The measuring cycles are outlined below. Normal or fast measuring cycle is configured from the factory via the country code (three last characters of the type number).



Normal cycle (24 seconds)

| Abbreviation | Description                          |
|--------------|--------------------------------------|
| FM           | Flow measurement                     |
| ТМ           | Temperature measurement              |
| TRM          | Temperature reference<br>measurement |
| FB           | Flow calculation                     |
| ТВ           | Temperature calculation              |
| VEB          | Volume and energy calculation        |
| В            | Calculation and integration          |



Fast/verification cycle (4 seconds)

# MULTICAL® 402

In the sketches on the previous page, each letter abbreviation represents a meter task. The abbreviations are explained in the table below.

| Abbreviation | Description                                                                                                                                                                                                                                        |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FM           | Flow measurement                                                                                                                                                                                                                                   |
|              |                                                                                                                                                                                                                                                    |
| TM           | Temperature measurement                                                                                                                                                                                                                            |
|              | Measurement of T1 and T2 sensors starts                                                                                                                                                                                                            |
| TRM          | Temperature reference measurement                                                                                                                                                                                                                  |
|              | Measurement of reference resistors starts                                                                                                                                                                                                          |
| FB           | Flow calculation                                                                                                                                                                                                                                   |
|              | Calculation of a flow average based on flow measurements saved since the latest flow calculation                                                                                                                                                   |
| ТВ           | Temperature calculation                                                                                                                                                                                                                            |
|              | Calculation of a T1 and a T2 value based on the latest measurement of reference resistors, T1 and T2 sensors. At the same time a dT (T1-T2) value is calculated                                                                                    |
| VEB          | Volume and energy calculation                                                                                                                                                                                                                      |
|              | Calculation of a volume value based on an average of flow measurements saved since the latest VE calculation in proportion to the period of time passed since the latest VE calculation. This volume is integrated in the meter's volume register. |
|              | Calculation of an energy value based on volume and dT value for the period since the latest VE calculation. This energy is integrated in the meter's energy register.                                                                              |
| В            | Calculation                                                                                                                                                                                                                                        |
|              | Flow, temperature, volume and energy are calculated as described in FB, TB and VEB respectively.                                                                                                                                                   |

### 13.2.2 Meter modes

The meter can operate in three different modes: normal, fast and verification mode. In normal mode the meters runs the normal cycle (24 sec.). In fast and verification mode the meter runs the fast/verification cycle (4 sec.).

The difference between fast mode and verification mode is the fact that verification mode opens relevant verification registers in the display, and at the same time different verification functions are opened.

### 13.2.2.1 Choice of mode

Via the country code (the last three characters of the type number) the meter is configured to start in either normal mode (24 sec.) or fast mode (4 sec.)

Furthermore, the meter can be forced into verification mode by disconnecting the supply and restarting the meter while keeping both front buttons pressed.

The meter remains in verification mode until the supply is disconnected and the meter restarted. However, a timeout secures that the meter returns from verification mode to normal mode after 9 hours.

It is indicated that the meter is in verification mode in that the three dots in the right side of the display flash like in fast mode. At the same time a P for "test mode" is shown in that of the big 7-segments which is placed farthest to the left in the display.

### 13.2.3 High-resolution verification registers

When the meter is in verification mode, reading of two high-resolution verification registers is opened: a volume register and an energy register.

These registers are integrated at the same time as the legal volume and energy registers, with the same values. However, the units of the high-resolution registers must be [ml] for volume and [10mWh] for energy, whereas the units of the legal registers can be configured depending on meter size.

### 13.2.3.1 <u>Reset of registers</u>

As long as the meter remains in verification mode double key pressure – i.e. both keys remain pressed for 5-6 seconds – functions as reset of the high-resolution verification registers. Thus, both registers are reset.

### 13.2.4 Verification pulses

When the meter is in verification mode it can emit verification pulses with a resolution that appears from the table in paragraph 13.3.3.

The verification pulses are established via plug-in module 402-0-11. The pulse outputs are galvanically separated from the meter. (Pulse Interface type 66-99-109 cannot be used for MULTICAL<sup>®</sup> 402)

|                      |                        | Тур | e 40    | 2- |    |
|----------------------|------------------------|-----|---------|----|----|
| Data + 2 pulse outpu | ts (CE, CV)            |     |         |    | 11 |
|                      | <b>4</b><br>55351026_A |     | р.<br>В |    |    |

## Technical data of verification pulses via 402-0-11 module

Energy 16-17 Volume: 18-19

| Туре                  | Open collector (OB)                        |
|-----------------------|--------------------------------------------|
| Pulse duration        | 3.9 ms.                                    |
| Max. pulse frequency: | 120 Hz                                     |
| External voltage      | 530 VDC                                    |
| Current               | 110 mA                                     |
| Residual stress       | $U_{CE}\approx 1~V~at~10~mA$               |
| Leak current          | $I_{CE} \leq 1 \ \mu A \ at \ 25^{\circ}C$ |
| Electrical isolation  | 2 kV                                       |
| Max. cable length     | 5 m                                        |
| Resolution            | see table 11                               |

## 13.2.4.1 Use of Pulse Tester

The high-resolution energy and volume pulses can be connected to Kamstrup's Pulse Tester type 66-99-279 as shown in the below drawing. It is necessary to connect pull-up resistors of e.g. 33 k $\Omega$  as shown in the drawing.



### 13.2.5 Autointegration

The purpose of autointegration is to test the calculator's accuracy. During autointegration the flow through the meter must be cut off to make it possible to read volume and energy counted during autointegration without the meter continuing normal counting in the registers afterwards.

Autointegration requires input of a volume as well as a number of integrations, over which the meter is to distribute the volume.  $MULTICAL^{(B)}$  402 is configured for autointegration = 100 litres to be distributed over 40 integrations from the factory.

Furthermore, the high-resolution verification registers are reset to ensure that they include the result of the autointegration alone after the autointegration, not an accumulation with previously counted values.

Before starting autointegration, VerifyCtrl of the module plug must be connected to the meter's ground – see below sketch. Subsequently the sub-key is pressed continuously for 5-6 seconds, upon which the "OK" symbol in the display is switched on and the integration starts. When autointegration starts the high-resolution registers are reset, whereas the legal volume registers continue counting.

Subsequently, the meter starts the integrations. With each integration the temperatures are measured and calculated, volume is counted and the energies (corresponding to the volume counted and the temperatures calculated) are calculated and totalized.



After autointegration all volume and energy registers – incl. the high-resolution verification registers – have been counted with the given volume and the calculated energies. Furthermore, the average of the temperatures measured during autointegration has been saved in two temperature verification registers, T1 average and T2 average.

For calculation of accuracy and precision the registers with RID 223, 155, 229 and 230 – volume, energy, T1 average and T2 average respectively – can be read out after the autointegration.

| Verification registers |                    | RID |
|------------------------|--------------------|-----|
| Energy                 | EHighRes           | 155 |
| Volume                 | VHighRes           | 223 |
| T1 average             | T1averrage_AutoInt | 229 |
| T2 average             | T2averrage_AutoInt | 230 |

# **13.3 Handling of different test methods**

## 13.3.1 Standing start/stop

Standing start/stop is a method used for testing the flow meter's accuracy. The test must be carried out while the meter is mounted in a flow test stand. The flow through the meter is cut off. Now the verification registers are reset and the flow is opened for a period of time while the water running through the meter is being collected. Having switched off the flow again the volume of the collected water is compared to the volume counted by the meter. Generally standing start/stop requires bigger test volume than flying start/stop.

## 13.3.1.1 Standing start/stop at display reading of V' and Q'

Condition: MULTICAL<sup>®</sup> 402 must be in verification mode.

V' and Q' are reset by double key pressure – i.e. both keys are pressed continuously for 5-6 seconds. Thus, both registers are reset.

The selected display reading is updated at intervals of 4 sec.

## 13.3.1.2 <u>Standing start/stop using pulse outputs</u>

Condition: MULTICAL<sup>®</sup> 402 must be in verification mode.

Verification pulses are connected as described in paragraph 13.2.4 above.

## 13.3.2 Flying start/stop

"Flying start/stop" is the most frequently used method for testing the flow meter's accuracy. The test must be carried out while the meter is mounted in a flow test stand and the water flow through the meter is constant.

The meter's counting of volume and energy in the high-resolution verification registers can be controlled by the PULSE-INOUT1 (pin 8) connection of the verification plug. The meter only counts as long as PULSE-INOUT1 is connected. Based on the time, during which PULSE-INOUT1 is connected, and the fact that the flow through the meter/flow stand is constant, the theoretical volume through the meter can be calculated and compared to the volume counted by the meter.

As the meter counts volume and energy every 4 seconds (in verification mode – see paragraph 13.2.4), and as counts around start and stop flanks must be weighted in relation to the time between flank and calculation, it can take up to four seconds from PULSE-INOUT1 has been disconnected until the result can be read. Furthermore, the time between two flanks must not be less than 4 seconds.



At the very moment PULSE-INOUT1 is connected the verification registers are reset. Maximum 4 seconds after this the verification registers are counted the first time followed by normal counting in the registers every 4 seconds.

The first count after having connected PULSE-INOUT1 is weighted in relation to the time from the flank for this counting so that only volume and energy corresponding to the period are counted.

When PULSE-INOUT1 is disconnected, the meter will make a last counting of the verification registers within four seconds, whereupon counting in the registers stops. The last counting after having disconnected PULSE-INOUT1 is weighted in relation to the time from the previous calculation for the flank, so that only volume and energy corresponding to this period are counted.

As long as PULSE-INOUT1 is disconnected the values measured during the previous period with PULSE-INOUT1 connected remain in the verification registers.

The verification registers can either be read from the display or via the serial data connection while PULSE-INOUT1 is disconnected:

| Verification registers |          | RID |
|------------------------|----------|-----|
| Energy                 | EHighRes | 155 |
| Volume                 | VHighRes | 223 |

### 13.3.3 Pulse resolution in verification mode

The resolution of the pulse outputs depends on the actual meter size. In addition to the pulse resolution of MULTICAL<sup>®</sup> 402 the table includes the resolutions of Kamstrup's previous compact meters; MULTICAL<sup>®</sup> Compact and MULTICAL<sup>®</sup> 401.

### Meter size [m<sup>3</sup>/h]

| МСС     | MC-401 | MC-402 |
|---------|--------|--------|
| -       | qp 0.6 | qp 0.6 |
| qp 0.75 | -      | -      |
| qp 1.5  | qp 1.5 | qp 1.5 |
| qp 2.5  | -      | qp 2.5 |
| -       | qp 3.0 | -      |
| -       | qp 3.5 | qp 3.5 |
| -       | qp 6.0 | qp 6.0 |
| -       | qp 10  | qp 10  |
| -       | qp 15  | qp 15  |

Energy [pulses/kWh]

| МСС  | MC-401 | MC-402 |
|------|--------|--------|
| -    | 1000   | 1000   |
| 1000 | -      | -      |
| 1000 | 1000   | 1000   |
| 1000 | -      | 1000   |
| -    | 500    | -      |
| -    | 500    | 500    |
| -    | 250    | 250    |
| -    | 125    | 125    |
| -    | 125    | 125    |

Volume [pulses/litre]

MC-401

100

100

50

50

25

12.5

12.5

MCC

100 100

100

-

-

-

\_

re] Flow @ 120 Hz [l/h]

MC-402

100

100

100

-

50

25

12.5

12.5

| MC-402 |
|--------|
| 4320   |
|        |
| 4320   |
| 4320   |
|        |
| 8640   |
| 17280  |
| 34560  |
| 34560  |

Table 11

# 13.4 True energy calculation

During test and verification the heat meter's energy calculation is compared to the "true energy" calculated according to the formula of EN 1434-1:2007 or OIML R75:2002.

The PC-program METERTOOL from Kamstrup includes an energy calculator which is suitable for this purpose:

| 🝕 Heat energy calculator - OIML R75-1:2002 💦 📃 🗙 |                                |                    |          |  |
|--------------------------------------------------|--------------------------------|--------------------|----------|--|
| <u>E</u> xit <u>O</u> ptions <u>A</u> b          | out                            |                    |          |  |
| - Input                                          | Flam a stilling                | Determine a sitism |          |  |
| _                                                | Flow position                  | Return position    |          |  |
| Temparature:                                     | 175,000                        | 20,000             | °C       |  |
| Pressure:                                        |                                | 16                 | bar      |  |
| Volume:                                          |                                | 0,1                | m3       |  |
|                                                  |                                |                    |          |  |
| Calculations                                     | <b>F</b> law <b>a a i</b> kian | Debum exilien      |          |  |
|                                                  |                                |                    |          |  |
| Specific volume:                                 | 1,12014                        | 1,00111            | l/kg     |  |
| Specific enthalpy:                               | 205,97851                      | 23,72847           | Wh/kg    |  |
| Heat coefficient:                                | 1,04970                        | 1,17450            | kWh/m3/K |  |
| Energy:                                          | 16,27032                       | 18,20478           | kWh      |  |
|                                                  |                                |                    |          |  |
| Unit: kWh Resolution: 5 digits                   |                                |                    |          |  |

The true energy at the most frequently used verification points is indicated in the table below.

| T1 [°C] | T2 [°C] | ΔΘ [K] | Flow<br>[Wh/0.1 m <sup>3</sup> ] | Return<br>[Wh/0.1 m³] |
|---------|---------|--------|----------------------------------|-----------------------|
| 42      | 40      | 2      | 230,11                           | 230,29                |
| 43      | 40      | 3      | 345,02                           | 345,43                |
| 53      | 50      | 3      | 343,62                           | 344,11                |
| 50      | 40      | 10     | 1146,70                          | 1151,55               |
| 70      | 50      | 20     | 2272,03                          | 2295,86               |
| 80      | 60      | 20     | 2261,08                          | 2287,57               |
| 160     | 40      | 120    | 12793,12                         | 13988,44              |
| 160     | 20      | 140    | 14900,00                         | 16390,83              |

# **14 METERTOOL HCW**

## 14.1 Introduction

The Kamstrup Software product "**METERTOOL HCW**" (66-99-724) is used for the configuration of **MULTICAL® 402** as well as other Kamstrup heat, cooling and water meters. For MULTICAL®402 it is used for reconfiguration, flow sensor adjustment as well as test/verification.

## 14.1.1 System requirements

METERTOOL requires minimum Windows XP SP3, Windows 7 Home Premium SP1 or newer as well as Windows Internet Explorer 5.01 or newer.

| Minimum: | 1 GB RAM                      | Recommended: | 4 GB RAM            |
|----------|-------------------------------|--------------|---------------------|
|          | 10 GB free HD space           |              | 20 GB free HD space |
|          | Display resolution 1366 X 768 |              | 1920 x 1080         |
|          | USB - connection              |              |                     |
|          | Printer installed             |              |                     |

Administrator rights to the PC are required in order to install and use the programs. The programs must be installed under the log-in of the person who is to use the programs.

## 14.1.2 Interface

The following interfaces can be used:

| Verification equipment | type | 66-99-372 | Verification of 402-W (Pt500) and total/partial reconfiguration |
|------------------------|------|-----------|-----------------------------------------------------------------|
| Verification equipment | type | 66-99-373 | Verification of 402-T (Pt500) and total/partial reconfiguration |
| USB prog. cable        | type | 66-99-097 | Used for total programming and flow sensor adjustment           |
| Com prog. cable        | type | 66-99-108 | Used for total programming and flow sensor adjustment           |
| Optical eye USB        | type | 66-99-099 | Partial reconfiguration                                         |
| Optical eye COM port   | type | 66-99-102 | Partial reconfiguration                                         |
| USB 3-wire             | type | 66-99-098 | Partial configuration via module                                |

Using equipment with Kamstrup USB, the USB driver must be installed before connection.

## 14.1.3 Installation

Check that system requirements are fulfilled.

Close other open programs before starting the installation.

Download the METERTOOL software from Kamstrup's FTP-server and follow the program's directions through the installation.

During installation the program METERTOOL HCW detects whether a USB-driver for the optical read-out head is installed. If not, you will be asked if you would like to install it. Answer yes to this question.

When the installation has been completed, the icon "METERTOOL HCW" will appear in the 'All Programs' menu under 'Kamstrup METERTOOL' (or from the menu "start" for Windows XP) and as a link on the desktop. Doubleclick on link or icon in order to start the program.

# 14.2 METERTOOL HCW for MULTICAL<sup>®</sup> 402

## 14.2.1 Start-up and connection

It is important to be familiar with the calculator's functions before starting programming.

The Kamstrup Software product "METERTOOL HCW" (66-99-724) is used for MULTICAL<sup>®</sup> 402.





MULTICAL<sup>®</sup> 402 with USB data cable (66-99-097)

MULTICAL<sup>®</sup> 402 with data cable, RS232 (66-99-108)

There are 2 modes in which to set the program: Basic mode and Advanced mode. In basic mode the date and time can be set and the meter details can be read. In advanced mode other more advanced features are available as well. See below.

| Desia    | Meter details                     |  |
|----------|-----------------------------------|--|
| Basic    | Change date and Time              |  |
|          | Meter details                     |  |
|          | Change date and Time              |  |
|          | Verification                      |  |
| Advanced | Module setup                      |  |
|          | Print Label                       |  |
|          | Certificates                      |  |
|          | Flow sensor adjustment<br>(MC402) |  |

Before running the program, connect your optical read-out head to your computer and place the head on the lower right-hand corner of the calculator front, resting the read-out head on the two plastic studs. Press any of the buttons on the meter once to enable communication through the optical eye.

Start up METERTOOL HCW and click "Connect" in METERTOOL HCW.



In response METERTOOL HCW displays a picture of MULTICAL<sup>®</sup> 402 with information on S/W revision etc.



From the menu in the left side of the screen a number of different options are available, depending on mode (Basic/Advanced).

# 14.3 How to use METERTOOL HCW

## 14.3.1 Configuration (Basic/Advanced Mode)

|                                                             |                                                      | METERTOOL HCW                 |                                       | Help Abo                                                           | ıt 💶 🗆 🗙      |
|-------------------------------------------------------------|------------------------------------------------------|-------------------------------|---------------------------------------|--------------------------------------------------------------------|---------------|
| P METERTOOL HC                                              | CW                                                   |                               |                                       | Meter                                                              | Settings      |
| MULTICAL® 402 (Advanced)                                    |                                                      |                               |                                       | ← Conne                                                            | ect new meter |
| Meter details MULTI                                         | ICAL® 402                                            | ng                            | Type No.<br>Temp. connection          | (W) Pt500                                                          | *             |
| Time / date<br>Modules<br>Preset VA / VB                    | Customer No. 61074406<br>Type No. 402 W 00           | 0 2 00 3 221                  | Module<br>Power supply                | (00) No modul<br>(2) Battery, D-cell                               |               |
| Print Label<br>Verification                                 | (A) (B) (CC<br>Prog. No. 4 4 4                       | .c)<br>16                     | Flow part<br>Country code             | (3) 0,6 - G1B (R <sup>3</sup> 4) - 190<br>(221) UN MID Heat - PN25 |               |
| Verification unit settings<br>Verification unit calibration | (DDD) (EE) (F<br>Config No. 212 00 24                | F) (GG) (N) (PP)<br>4 24 0 95 | Prog. No.                             |                                                                    | <b>^</b>      |
| Certificate<br>Flow Meter adjustment                        | TL3 0<br>Peak Avg. time 0060                         | N/A (Max. 0)<br>minutes       | Flow sensor in<br>Energy Unit<br>V1   | <ul><li>(4) Return pipe</li><li>(4) MWh</li><li>416</li></ul>      | ·             |
| Heset                                                       | Target date 01-01<br>leat/Cooling Change Over 180,00 | (MM-dd)<br>°C                 | Config No.                            |                                                                    |               |
|                                                             |                                                      |                               | Display Code<br>Tarif Type<br>Input A | 212<br>(00) No Tarif<br>(24) 10 l/imp                              | •             |
|                                                             | Read meter                                           | Program                       | Input B<br>Leak<br>Output C and D     | (24) 10 l/imp<br>(0) Disabled<br>(95) 32 msek.                     |               |
|                                                             |                                                      |                               |                                       |                                                                    |               |

The configuration of MULTICAL<sup>®</sup> 402 can be read out directly. The program is self-explanatory as to most coding numbers (see text in "combo-boxes"), further details can be found in the respective paragraphs of the technical description.

There are two programming options "Partial programming" and "Total programming".

"Partial programming" does not allow change of coding which is important to energy calculation, e.g. Type No. and Prog. No.

By means of "Total programming" it is possible to change the remaining values too. Programming is only possible if data cable 66-99-097 or 66-99-108, alternatively verification cable 66-99-372 or 66-99-373, is used and the meter's factory/verification seal is broken. Before use, current handling and re-verification requirements must be checked.

It is not possible to change the serial number as it is a unique number allocated to the meter during production.

"Heat/Cooling Change Over" can be disabled depending on the meter type in question.



## 14.3.2 Time / date (Basic/Advanced Mode)

In this menu the built-in clock in the meter can be read out and adjusted either manually or by setting the meter to the clock of the PC on which METERTOOL is running.

## 14.3.3 Modules (Advanced Mode)

The menu "Modules" is used for configuration of module data for modules mounted in the meter's module position. See paragraph 11.4 - Modules.

## 14.3.4 Preset VA / VB (Advanced Mode)

Presets the register values of the two extra pulse inputs for water and electricity meters.

## 14.3.5 Print Label (Advanced Mode)

Initiates printing of meter label. Reading of the meter configuration is required before printing can take place.

## 14.3.6 Verification (Advanced Mode)

See separate paragraph, 14.3 Verification with METERTOOL HCW.

## 14.3.7 Verification unit settings (Advanced Mode)

See separate paragraph, 14.3 Verification with METERTOOL HCW.

## 14.3.8 Verification unit calibration (Advanced Mode)

See separate paragraph, 14.3 Verification with METERTOOL HCW. Used for changing between temperature set points during calibration.

## 14.3.9 Certificate (Advanced Mode)

Initiates printing of verification certificates.

## 14.3.10 Flow Curve Adjustment (Advanced Mode)

Please, see section 14.4.

### 14.3.11 Reset (Advanced Mode)

There are 4 resets: Normal reset, data logger reset, total reset and static info code reset.

Normal reset: The backup log is updated, the calculator is restarted and the configuration parameters reloaded. Note! This reset does not affect any registers.

Data logger reset: The calculator's data protocol is reset, which affects the year, month, day and hour log as well as the info code and configuration log.

Total Reset: Resets all historical as well as legal registers.

Static info code reset: The Info code stays in the meter's display until a static info code reset is performed, and only if the meter is configured for "Manual Reset of info codes".

This does not reset the info code logger.

# **14.4 METERTOOL HCW Settings**

By clicking the "Settings" tab the following can be changed:

### 14.4.1 Change language

The program language can be changed to 6 different languages: Danish, German, English, French, Polish and Russian.

### 14.4.2 COM-port settings

The COM-port can be selected manually instead of the automatically selected default setting.

### 14.4.3 Update program

In this menu the METERTOOL program can be updated if a newer revision is available on Kamstrup's FTP-server.

#### 14.4.4 Update database

In this menu the METERTOOL database can be updated if a newer revision is available on Kamstrup's FTP-server.

| 09301602<br>06200926 | 201306191054                                                       | 35765760 bytes                                                                                                                                | Undate                                                                                                                                                                                                                                                                                   |
|----------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6200926              |                                                                    |                                                                                                                                               | opuere                                                                                                                                                                                                                                                                                   |
|                      | 201306200926                                                       | 35634688 bytes                                                                                                                                | Update                                                                                                                                                                                                                                                                                   |
| 0171026              | 201311220959                                                       | 23489024 bytes                                                                                                                                | Update                                                                                                                                                                                                                                                                                   |
| 10011459             | 201311051239                                                       | 28590592 bytes                                                                                                                                | Update                                                                                                                                                                                                                                                                                   |
| 9251251              | 201309251251                                                       | 34106880 bytes                                                                                                                                | Update                                                                                                                                                                                                                                                                                   |
| 1111020              | 201311111020                                                       | 51598848 bytes                                                                                                                                | Update                                                                                                                                                                                                                                                                                   |
| 8191426              | 201311251645                                                       | 25848320 bytes                                                                                                                                | Update                                                                                                                                                                                                                                                                                   |
| 6161607              | 201311271609                                                       | 46935552 bytes                                                                                                                                | Update                                                                                                                                                                                                                                                                                   |
|                      | 0171026<br>0011459<br>19251251<br>11111020<br>18191426<br>06161607 | 0171026 201311220999<br>00011459 201311051239<br>8251251 201309251251<br>1111020 201311111020<br>8191426 201311251645<br>8191407 201311271609 | 0211105 20111120099 20480024 hytem   02111052128 2059002 hytem   02111052129 2059002 hytem   02111052129 20510051251   0211105210 35558946 hytem   0211115210 35558946 hytem   0311115210 2558940 hytem   031115254 2544020 hytem   031115254 2544020 hytem   03111527400 40335552 typem |

## Dansk Deutsch English Français Polska Русский OK Cancel

Select language





### 14.4.5 Backup & Restore databases

Verification data as well as equipment data can be saved and backed up using this menu.

| This button manually installs the USB driver used for the optical read-out head. |
|----------------------------------------------------------------------------------|
| The contact button provides links to Kamstrup's website and mailbox.             |
| Shows the latest activities/functions used in the program.                       |
| Provides a link to the user manual for the meter on Kamstrup's website.          |
|                                                                                  |

## 14.4.8 About button

Lists the METERTOOL program versions and revision numbers as well as all sub-programs, incl. their type numbers and revision numbers, for the entire METERTOOL HCW program.

### 14.4.9 Application

Double-click on link or icon in order to start the program.

Click "Connect" to get in contact with the meter.

Activate "Configuration" in order to start meter configuration.

|                               | METERTOOL HCW                      |                           | Help About _ 🗆 🗙  |
|-------------------------------|------------------------------------|---------------------------|-------------------|
|                               | LHCW                               |                           |                   |
| •                             |                                    |                           | Meter Settings    |
| MULTICAL® 402 (Advand         |                                    |                           | Connect new meter |
| Meter details                 |                                    | Type No.                  | â                 |
| Configuration                 |                                    | Temp connection (W) Pt500 |                   |
| Time / date                   | Serial No. 61074406                | Module (00) No m          | odul 🔹            |
| Modules                       | Customer No. 61074406              | Power supply (2) Batter   | v. D-cell         |
| Preset VA / VB                | Type No. 402 W 00 2 00 3 221       | Temp sensor (00) No si    | ensors •          |
| Print Label                   |                                    | Flow part (3) 0.6 - 0     | 1B (R¾) - 190 •   |
| Verification                  | Prog. No. 4 4 416                  | Country code (221) UN     | MID Heat - PN25   |
| Verification unit settings    |                                    |                           |                   |
| Verification unit calibration | Config No. 212 00 24 24 0 95       | Prog. No.                 | *                 |
| Certificate                   | TL2 0 N/A (Max. 0)                 | Flow sensor in (4) Return | pipe 🔹            |
| Flow Meter adjustment         | TL3 0 N/A (Max. 0)                 | Energy Unit (4) MWh       | · · · ·           |
| Reset                         | Peak Avg. time 0060 minutes        | V1 416                    | · · · ·           |
| 11001                         | Target date 01-01 (MM-dd)          |                           |                   |
|                               | Heat/Cooling Change Over 180,00 °C | Config No.                | <u>^</u>          |
|                               |                                    | Display Code 212          | •                 |
|                               |                                    | Tarif Type (00) No T      | arif 🔹            |
|                               |                                    | Input A (24) 10 l/i       | mp 🝷              |
|                               | Read meter Program                 | Input B (24) 10 l/i       | mp 🔹              |
|                               |                                    | Leak (0) Disabl           | ed 🔹              |
|                               |                                    | Output C and D (95) 32 m  | sek. •            |
|                               |                                    |                           |                   |
|                               |                                    |                           |                   |
|                               |                                    |                           |                   |
|                               |                                    |                           |                   |
|                               |                                    |                           |                   |

Enter the present configuration by activating "Read meter".

Enter the required changes of coding and activate "Program" in order to carry out the changes in the meter.

If USB interface is used, it must be connected before the program is opened.

# 14.5 Verification of MULTICAL<sup>®</sup> 402 using METERTOOL HCW

## 14.5.1 General information

Verification of MULTICAL<sup>®</sup> 402 requires verification equipment as well as input of verification data into the METERTOOL HCW program.

### 14.5.2 Verification equipment

Verification equipment, e.g. type 66-99-372 is used for verification of the MULTICAL<sup>®</sup>402 calculator. Verification comprises Energy verification of "E1" (66-99-372) and "E3" (66-99-373), test of volume inputs "VA" and "VB.

Different temperatures are simulated for the two sensor inputs "T1" and "T2". Together with auto-integration these temperatures form the basis of the verification of the energy calculation (see paragraph 13.2.5 Autointegration).

The equipment was primarily constructed for use in laboratories which test and verify heat meters, but can also be used for performance test of the meter.

The computer program "METERTOOL HCW" type 66-99-724 is used for configuration, test and verification.

The verification equipment for MULTICAL<sup>®</sup> 402 is supplied with USB interface (type 66-99-098) as well as corresponding driver software. During installation this interface creates a "virtual COM port" which figures as an optional COM port in the METERTOOL HCW software. As the "virtual COM port" only exists when the equipment is connected, the verification equipment *must* be connected to the computer before the program "METERTOOL HCW" is started.

Furthermore, the verification equipment requires mains supply via the included mains adapter.



Verification does not apply to temperature and flow sensors.

The verification equipment is available in two different types, depending on the MULTICAL<sup>®</sup> 402 type used and the temperature points to be tested.

| 66-99-372<br>Standard (EN1434/MID)<br>Type 402-W (2-wire Pt500) | T1 [°C]<br>43<br>80<br>160 | T2 [°C]<br>40<br>60<br>20 | ∆Θ [K]<br>3<br>20<br>140  |
|-----------------------------------------------------------------|----------------------------|---------------------------|---------------------------|
| 66-99-373<br>Standard (EN1434)<br>Type 402-T (2-wire Pt500)     | T1 [°C]<br>12<br>9<br>5    | T2 [°C]<br>15<br>17<br>20 | ∆Θ [K]<br>-3<br>-8<br>-15 |

For other equipment variants (types or temperature points), please contact Kamstrup A/S.

### 14.5.3 Function

Verification equipment type 66-99-372 and 66-99-373 is housed in a standard MULTICAL<sup>®</sup> base and comprises battery, connection PCB, verification PCB, microprocessor, control relays and precision resistors. The connection between verification equipment and MULTICAL<sup>®</sup> 402 consists of a 16-pole test connector. During verification the temperature sensors must be dismounted from the terminal block.

During the test the calculator is supplied by the battery. The verification PCB is powered with 12 VDC by the enclosed external mains adapter. The microprocessor starts auto-integration and temperature simulation is obtained by means of fixed precision resistors, which are automatically changed via relays controlled by the microprocessor.

After the test the computer reads all registers in the calculator and compares the values to the calculated values.

The calibration result in percentage for each test point can be stored in the computer under the serial number of the tested MULTICAL<sup>®</sup> 402 to be printed out later on a test certificate.

### 14.5.4 Verification data

The first time METERTOOL HCW and the verification equipment is used a number of calibration data must be entered into the menu "Verification unit settings" in the METERTOOL program. Calibration data is electronically included in the verification equipment (also enclosed with the verification equipment as a certificate on paper). In order to transfer calibration data from the equipment to the program select "Verification" from the menu "Settings" and activate "Read".

Calibration data is now transferred to and saved in the METERTOOL HCW program.

The calibration data of the equipment and the program verification data are compared every time verification equipment is connected in order to secure that verification data is updated if the calibration data of the equipment have been changed. For instance this can be due to recalibration of verification equipment. Calibration data of the verification equipment can be maintained by changing verification data in the program METERTOOL and writing the new data into the equipment. In order to avoid unintentional change of calibration data this writing is protected by a password, which can be obtained from Kamstrup A/S.

Calibration data include test points, permissible error, uncertainty, ambient temperature (fixed value) and number of integrations per test.

Having entered verification data, the program automatically calculates the true k-factor in accordance with the formula of EN 1434 and OIML R75:2002.

|                               |                         |            | METERTOOL HC | w                      |         |        |        | Help                     | About         |       |
|-------------------------------|-------------------------|------------|--------------|------------------------|---------|--------|--------|--------------------------|---------------|-------|
| 📮 METERTOO                    | L HCW                   |            |              |                        |         |        |        | Met                      | er Sett       | tings |
| MULTICAL® 402 (Advan          |                         |            |              |                        |         |        |        | (+* (                    | onnect new me | eter  |
| Meter details                 |                         |            |              |                        |         |        |        |                          |               |       |
| Configuration                 | Serial Number: 624701   |            |              |                        | 1st     | 2nd    | 3rd    | <b>.</b>                 |               |       |
| Time / date                   | Configured: 15-02-201   | 0 09:27:29 |              | Permissible Erro       | 1,50    | 0,80   | 0,70   | <b>%</b>                 |               |       |
| Modules                       | Countr 10               | 10 elm     |              |                        | 0,68    | 0,16   | 0,02   | %                        |               |       |
| Preset VA / VB                | Counts. III             |            | Heat Co      | efficients - Flow Pipe | 4,1864  | 4,1888 | 4,1905 | MJ / (m <sup>3</sup> °C) |               |       |
| Print Label                   | Verification            |            |              | icients - Return Pipe  | 4,1847  | 4,1847 | 4,1829 | MJ / (m <sup>3</sup> *C) |               |       |
| Verification                  | Avg. room temp.: 23     |            |              | mbar of Integration    | 15      | I.s.   | s      |                          |               |       |
| Verification unit settings    | Room temp. range: 5     |            | NU           | nuer of integrations   | 15      | 2      | 5      |                          |               |       |
| Verification unit calibration |                         |            |              |                        |         |        |        |                          |               | - 11  |
| Certificate                   | Test Points             | 1et Te     | Ded Tf De    | d Te Ded Tf            | 2rd Tr  |        |        |                          |               |       |
| Flow Meter adjustment         | Measured Resistance     | 529.336 51 | 7.098 532.3  | 383 509.560            | 539.040 | Ω      |        |                          |               |       |
| Reset                         |                         | 10.046     | 101 20.0     | 10 A 000               | 00.027  |        |        |                          |               |       |
|                               | True remperature 11,565 | 15,040 8,7 | 10,0.        | 4,890                  | 20,037  |        |        |                          |               |       |
|                               | Nominal Temperature 12  | 15 9       | 17           | 5                      | 20      |        |        |                          |               |       |
|                               |                         |            |              |                        |         |        |        |                          |               |       |
|                               |                         |            |              |                        |         |        |        |                          |               |       |
|                               | Edit Write              |            | Read         |                        |         |        |        |                          |               |       |
|                               |                         |            |              |                        |         |        |        |                          |               |       |

## 14.5.5 Verification

The verification program menu is opened by activating "Verification".

| A REAL PROPERTY AND A REAL |                       | METERTOOL HCW                | Help About 🗕 🗆 🗙   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------------------------|--------------------|
| P METERTOO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | LHCW                  |                              | Meter Settings     |
| MULTICAL® 402 (Advan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ced)                  |                              | Connect new meter  |
| Meter details                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Test                  | Equipment                    |                    |
| Configuration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Manufacturer:         | Serial Number: 624007        |                    |
| Time / date                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Operator:             |                              |                    |
| Modules                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Calib procedure:      | Meter                        |                    |
| Preset VA / VB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Cano, procedure,      | Serial Number: 60791105      |                    |
| Print Label                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Order No.:            | Customer No: 000000060791105 |                    |
| Ventication                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Comments:             | Type No: 402W002003278       |                    |
| Verification unit settings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                       | Deep No. 67015               |                    |
| Verification unit calibration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       | Prog. No. Company            | Start verification |
| Certificate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       | Config No.: 212002424095     | Save               |
| Flow sensor adjustment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       |                              | 20                 |
| Reset                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Energy test results 1 |                              |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Energy test results 2 |                              |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Prergy test results a |                              |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                              |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                              |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                              |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                              |                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       |                              |                    |

Click on "Start verification" in order to begin test/verification.

When the test has been completed, the result will be displayed. If the result can be approved, click on "Save". The result is now saved in the database under the serial number of the calculator. You can save several results under one serial number without overwriting earlier results.

### 14.5.6 Certificate

If you want to print a certificate with saved results, select "Certificate". The test/verification result can subsequently be found according to serial number, and the certificate can be printed.

|                                                                                                                                                                                                                                                                            | METERTOOL HCW                                                                                                                                                                                           | Help | About     | _ <b>_ </b> |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|-------------|
| P METERTOO                                                                                                                                                                                                                                                                 | LHCW                                                                                                                                                                                                    |      | Meter     | Settings    |
| MULTICAL® 402 (Advan                                                                                                                                                                                                                                                       |                                                                                                                                                                                                         |      | Connect r | ew meter    |
| MULTICAL® 402 (Advan<br>Meter details<br>Configuration<br>Time / date<br>Modules<br>Preset VA / VB<br>Print Label<br>Verification unit settings<br>Verification unit settings<br>Verification unit settings<br>Verification unit settings<br>Row Meter adjustment<br>Reset | ed)   Create Certificate   Serial No. from   Serial No. fom   Serial No. to   Calibrated from   Q2-10-2014   Galibrated from   Search   Print   Print   Serial No Time   61074406   02-10-2014 08:10:92 |      | Connect r | ew meter    |
|                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                         |      |           |             |

# 14.6 Flow sensor adjustment

### 14.6.1 General information

Should it prove necessary, during verification, to adjust the flow sensor, this can be done by selecting "Flow Sensor Adjustment" from the menu. This function is password protected and a password can be obtained from Kamstrup A/S. Data connection between the PC and MULTICAL<sup>®</sup> 402 can be made either via program cable interface (see below) or verification equipment.

### 14.6.2 Interface

The following interfaces can be used:

type 66-99-108 Sub 9 Com port connector for PC and 10-pole connector for sensor

type 66-99-097 USB port connector for PC and 10-pole connector for sensor

**Note!** When the interface is connected the product/verification sealing of the meter is broken. Renewed test/verification as well as sealing is subsequently required (current handling and reverification requirements must be observed).

### 14.6.3 Application

Before adjusting a sensor you must make sure that the sensor functions satisfactorily in the flow stand in question.

If a sensor is to be adjusted more than a few per cent, the sensor is probably defective, or it is a different error, and therefore no adjustment should be made.

### 14.6.4 Flow sensor adjustment



Open "Flow sensor adjustment":

"Read from Meter":

Reads data from flow sensor data

The required correction in  $q_i$ ,  $0.1xq_p$  and  $q_p$  can be entered in the field "Flow Curve Correction".

"Write to Meter":

Writes the correction to the connected flow sensor

# MULTICAL® 402

Example: A MULTICAL<sup>®</sup>402 flow sensor shows the following result after verification:

| 1% of qp:   | +1.1% |
|-------------|-------|
| 10% of qp:  | +0.3% |
| 100% of qp: | -0.1% |

In order to correct the inaccuracies, the following values are entered:

| 1% of qp:   | -1.1% |
|-------------|-------|
| 10% of qp:  | -0.3% |
| 100% of qp: | +0.1% |

Adjustments of more than +/-5% ought not to be made, as they can be due to a flow sensor error.

Having been adjusted the flow sensor is now ready for test/verification as well as sealing. **Note!** Current handling and reverification requirements must be observed.

# 14.7 LogView MULTICAL<sup>®</sup>402

## 14.7.1 Introduction and installation

Regarding "Introduction", "Interface" and "Installation" see paragraph 14.1 Introduction METERTOOL.

### 14.7.2 General information

**"LogView MULTICAL® 402"** reads logging data from MULTICAL<sup>®</sup> 402 and carries out interval logging. The read data can be used for analysis and diagnostic test of the heating installation. Data can be presented as table or graphics. Tables can be exported direct to "Microsoft Office Excel" (item no. 66-99-713).

For available logger data see paragraph 7.10 Data loggers.

### 14.7.3 "File"

**Settings** Setup of COM port for interface of calculator/equipment Setup of language choice for the program

Note! Do not forget to connect the USB interface before starting LogView.

Exit Exit LogView

### 14.7.4 "Log"

Select the required data function.

**Interval Data** enables interval read-out of the current counter values in MULTICAL<sup>®</sup> 402 at optional intervals from 1 to 1440 minutes as well as an optional number of repetitions of the reading from 1 to 9999 times.

For read-out of "current" counter values select interval 1 and repetition 1. Thereby you obtain one instantaneous reading.

**Daily Data, Monthly Data and Yearly Data** enables reading of logged data from MULTICAL<sup>®</sup> 402 including optional data period and values.

**Info Data** makes it possible to read out the latest 50 info events from MULTICAL<sup>®</sup> 402, the read-out includes date and info code of the info event.

### 14.7.5 "Quick Figure"

Quick Figure reads the energy register during verification as well as calculates the related Quick figure.

### 14.7.6 "Window"

The function makes it possible to change between the open dialog boxes of the program.

## 14.7.7 "Help"

- **Contact** E-mail address for registration as LogView user as well as requests on LogView related subjects.
- About Includes program numbers and revisions of the various components of the installed version.

In connection with error reports on LogView software we ask you to e-mail us a screen dump of "About".

**User Manual** Opens link to user manuals for METERTOOL and LogView programs for Kamstrup heat/cooling and water meters.









## 14.7.8 Application

Double click on link or icon for "LogView MULTICAL<sup>®</sup> 402" in order to start the program and select the required data function.

**Note!** Do not forget to set up the COM port the first time the program is used.

"**Daily Data**" is used as an example:

|                  | C LogView MULTICAL® 402                     |                     |
|------------------|---------------------------------------------|---------------------|
|                  | File Log QuickFigure Window Help            |                     |
| Select data      | Daily Log   Serial No 60000009   Not saved. |                     |
| bereet dutu      | C Daily Log                                 |                     |
| period from/to:  | From Newest Date 🔽 Heat energy ~ E1         |                     |
|                  | To -458days. V Cooling energy~E3            | from the meter:     |
|                  | Read Clear M m3 x T1 ~ E8                   | Possible/saved      |
| Activato "Poad"  | Records: 28                                 | d calculations:     |
|                  | Load Save V1                                |                     |
| to collect the   |                                             |                     |
| selected data    |                                             |                     |
|                  |                                             | Select required     |
|                  |                                             | data registers:     |
|                  |                                             | 5                   |
| Calculation with | Show Graph Add to Select All                | <u> </u>            |
| read values:     |                                             |                     |
|                  | Graphs                                      |                     |
|                  | Selected Registers                          | - Graph(s)/table of |
| Granh/table of   | Remove Selected Remove All                  | data from selected  |
| calculation.     |                                             | registers:          |
|                  |                                             |                     |
|                  | Serial No Refresh                           |                     |

After read-out, non-selected data registers become grey and cannot be used for further processing/analysis.

In order to read all data, activate "Select All" for all values to be marked.

Reading having been completed, the program automatically asks whether data should be saved. We recommend you to save read-outs to make it possible to reopen the data later for further analysis or documentation.

Additional functions can now be selected for the read data. By means of **"Calculation**" individual calculations can be carried out, and graphs/tables with the values appear by activating "Show Graph". If you want to save the calculation forms for reuse, select "Add to" and the function is added to "Calculated Registers".

In order to carry out a new data reading activate "Clear" and select a new period and new data registers.

If "Selected Registers" are chosen under "Graphs", graph(s)/a table with the marked registers is displayed.

The table can be exported to "Microsoft Office Excel" or printed.

Activate (+) to zoom in, activate (-) to zoom out on the axes.

The arrows  $(\uparrow \downarrow \rightarrow \leftarrow)$  on the axes are used for manoeuvring in the graph area.

|             | ister Viewer for Serial N | s 60000009.               |                     |                     |         |           |
|-------------|---------------------------|---------------------------|---------------------|---------------------|---------|-----------|
| Export to I | Excel Print               |                           |                     |                     |         |           |
| Date        | Heat energy ~ E1 (k/wh)   | Cooling energy ~ E3 (kWh) | m3 x T1 ~ E8 [m3xC] | m3 x T2 ~ E9 [m3xC] | V1 [m3] | In A [m3] |
| 09-12-09    | 159                       | 5                         | 1056                | 919                 | 7,14    | 0         |
| 09-12-10    | 1391                      | 0                         | 1561                | 314                 | 15,51   | 0         |
| 09-12-11    | 1389                      | 0                         | 1561                | 314                 | 15,51   | 0         |
| 19-12-12    | 1387                      | 0                         | 1957                | 313                 | 15,48   | 0         |
| 19-12-13    | 1389                      | 0                         | 1561                | 314                 | 15,52   | 0         |
| 19-12-14    | 1390                      | 0                         | 1560                | 314                 | 15,52   | 0         |
| 19-12-15    | 1389                      | 0                         | 1561                | 314                 | 15,52   | 0         |
| 19-12-16    | 1389                      | C.                        |                     | 1                   |         |           |
| 19-12-17    | 1390                      | Graph for Serial No 6     | 0000009.            |                     |         |           |
| 9-12-18     | 1308                      | 1600                      |                     |                     |         |           |
| 9-12-19     | 1394                      |                           |                     |                     |         |           |
| 9-12-20     | 1379                      | 1400                      |                     |                     |         |           |
| 9-12-21     | 1305                      | 1200                      |                     |                     |         |           |
| 9-12-22     | 1309                      | 1000                      |                     |                     |         |           |
| 9-12-23     | 1389                      | 1000                      |                     |                     |         |           |
| 9-12-24     | 1384                      | 800                       |                     |                     |         |           |
| 9-12-25     | 1382                      | 600                       |                     |                     |         |           |
| 19-12-26    | 1383                      |                           |                     |                     |         |           |
| 9.12-27     | 1382                      | 400                       |                     |                     |         |           |
| 9.12.28     | 1386                      | 200                       |                     |                     |         |           |
| 912-29      | 1388                      |                           |                     |                     |         |           |
| 9-12-30     | 1388                      | ~ +-+                     |                     |                     |         | T.        |
| 9.12.31     | 1384                      | 88888                     | <pre></pre>         | 533 <u>5</u> 888888 | 22222   | (888<br>8 |
|             | 1 204                     | 88888                     | 0000000000          | 000000000           | 00000   | 0000      |
| 10-01-01    | 1.00%                     | 00000                     |                     |                     |         | 0000      |
# **15 Approvals**

### 15.1 Type approvals

MULTICAL<sup>®</sup> 402 is type approved according to MID on the basis of pr EN 1434-4:2009. MULTICAL<sup>®</sup> 402 has a national German cooling approval based on PTB K7.2.

### **15.2 The Measuring Instrument Directive**

 $MULTICAL^{\otimes}$  402 is available with CE-marking according to MID (2004/22/EC). The certificates have the following numbers:

B-module: DK-0200-MI004-013 D-module: DK-0200-MIQA-001



We Vi Nous Wir My Nosotros Noi

#### **Declaration of Conformity**

Overensstemmelseserklæring Déclaration de conformité Konformitätserklärung Deklaracja Zgodnosci Declaración de conformidad Declaratie de conformitate

Kamstrup A/S Industrivej 28, Stilling DK-8660 Skanderborg Denmark Tel: +45 89 93 10 00 declare under our sole responsibility that the product(s): erklærer under eneansvar, at produkt(erne): déclarons sous notre responsabilité que le/les produit(s): erklären in alleiniger Verantwortung, dass/die Produkt(e): deklarujemy z pe<sup>3</sup>n<sup>1</sup> odpowiedzialnosci<sup>1</sup> ¿e produkt(y): Declaramos, bajo responsabilidad propia que el/los producto declaram pe proprie raspundere ca produsul/produsele:

| Instrument             | Туре                                                                                           | Type No.:                                                                | Classes                                                                                                  | Type Approval Ref.:                                                                                                        |
|------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| Heat Meter             | MULTICAL <sup>®</sup> 401                                                                      | 66-V and 66-W                                                            | CI 2/3,M1,E1                                                                                             | DK-0200-MI004-001                                                                                                          |
| Heat Meter             | MULTICAL <sup>®</sup> 402                                                                      | 402-V, 402-W, 402-T                                                      |                                                                                                          | DK-0200-MI004-013                                                                                                          |
| Heat Meter             | MULTICAL® 302                                                                                  | 302-T                                                                    | CI 2/3,E1,M1,M2                                                                                          | DK-0200-MI004-031                                                                                                          |
| Temperature<br>Sensors | PL and DS                                                                                      | 65-00-0A/B/C/D<br>66-00-0F/G<br>65-00-0L/M/N/P<br>66-00-0Q3/4<br>65-56-4 | M1                                                                                                       | DK-0200-MI004-002                                                                                                          |
| Flow Sensor            | ULTRAFLOW <sup>®</sup><br>qp 0.6400 m3/h                                                       | 65-S/R/T                                                                 | CI 3, M1, E1                                                                                             | DK-0200-MI004-003                                                                                                          |
| Flow Sensor            | ULTRAFLOW <sup>®</sup><br>qp 0.640 m3/h<br>and qp 150400 m3/h                                  | 65-S/R/T                                                                 | CI 2/3, M1, E1                                                                                           | DK-0200-MI004-003                                                                                                          |
| Calculator             | MULTICAL® 601<br>MULTICAL® 601+<br>MULTICAL® 602<br>MULTICAL® 6L2<br>SVM S6<br>MULTICAL® 801   | 67-A/B/C/D<br>67-E<br>602-A/B/C/D<br>6L2-F<br>S6-A/B/C/D<br>67-F/G/K/L   | M1, E1/E2<br>M1, E1/E2<br>M1, E1/E2<br>M1, E1/E2<br>M1, E1/E2<br>M1, E1/E2                               | DK-0200-MI004-004<br>DK-0200-MI004-004<br>DK-0200-MI004-020<br>DK-0200-MI004-020<br>DK-0200-MI004-020<br>DK-0200-MI004-009 |
| Flow Sensor            | ULTRAFLOW® 54/34<br>qp 0.6100 m3/h<br>qp 1501000 m3/h<br>ULTRAFLOW® 54                         | 65-5/65-3<br>65-5                                                        | Cl 2/3<br>M1, E1/E2<br>M1/M2, E1/E2<br>M1/M2, E1/E2                                                      | DK-0200-M1004-008<br>DK-0200-M1004-033                                                                                     |
| Water Meter            | MULTICAL® 21<br>MULTICAL® 41<br>MULTICAL® 61<br>MULTICAL® 62<br>flowIQTM 2101<br>flowIQTM 3100 | 021<br>66-Z<br>67-Z<br>62-Z<br>021<br>031                                | Cl 2, M1, E1/E2<br>Cl 2, M1, E1<br>Cl 2, M1, E1<br>Cl 2, M1, E1, B<br>Cl 2, M1, E1/E2<br>Cl 2, M1, E1/E2 | DK-0200-MI001-015<br>DK-0200-MI001-003<br>DK-0200-MI001-010<br>DK-0200-MI001-016<br>DK-0200-MI001-015<br>DK-0200-MI001-017 |

are in conformity with the requirements of the following directives:

er i overensstemmelse med kravene i følgende direktiver

sont conforme(s) aux exigences de la/des directives:

mit den Anforderungen der Richtlinie(n) komform ist/sind: s<sup>1</sup> zgodne z wymaganiami nastêpuj<sup>1</sup>cych dyrektyw:

s' zgodne z wymaganiami następuj cych dyrektyw: es/son conformes con los requerimientos de las siguintes directivas

este/sunt in conformitate cu cerintele urmatoarelor directive:

Measuring Instrument Directive EMC Directive LVD Directive PE-Directive (Pressure) R&TTE RoHS II Directive Date: 2015/04/09 Sign.: 2004/22/EC, Module D 2004/108/EC 2006/95/EC 97/23/EC, Module A1 1999/5/EC 2011/65/EU

Notified Body, Module D Certificate: Force Certification A/S EC Notified Body nr. 0200 Park Alle 345, 2605 Brøndby Denmark

> Lars Bo Hammer Quality Assurance Manager

5518-050,Rev.: AA1, Kamstrup A/S, DK8660 Skanderborg, Denmark

## **16 Troubleshooting**

MULTICAL<sup>®</sup> 402 has been constructed with a view to quick and simple installation as well as long and reliable operation at the consumer.

Should you, however, experience an operating problem, the table below can be used for troubleshooting.

Repairing the meter, if needed, we recommend only to replace battery, temperature sensors and communication modules. Alternatively, the whole meter should be replaced.

Major repairs must be made by Kamstrup A/S.

Before sending us the meter to be repaired or checked, please use the error detection table below to help you clarify the possible cause of the problem.

| Symptom                                                                                              | Possible reason                                                                     | Proposal for correction                                                                                                             |  |
|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|--|
| No display function (empty display)                                                                  | Power supply missing                                                                | Change battery or check mains<br>supplyDoes the supply plug<br>provide 3.6 VDC?                                                     |  |
| No energy accumulation (e.g. MWh)<br>and volume (m³)                                                 | Read "INFO" in the display                                                          | Check the error indicated by the info code (see paragraph 7.8)                                                                      |  |
|                                                                                                      | If "INFO" = 0 $\Rightarrow$                                                         | Check that the flow direction<br>matches the arrow on the flow<br>sensor                                                            |  |
|                                                                                                      | If "INFO" = 4, 8 or 12 $\Rightarrow$                                                | Check temperature sensors. If defective, replace the sensor set.                                                                    |  |
| Accumulation of volume (m <sup>3</sup> ) but not<br>of energy (e.g. MWh)                             | Flow and return sensors have been interchanged in either installation or connection | Mount the sensors correctly                                                                                                         |  |
|                                                                                                      | The heat/cooling cutoff $\theta_{hc}$ has been configured too low                   | Reconfigure $\theta_{hc}$ at a suitable value,<br>or configure $\theta_{hc}$ at 180°C, thereby<br>disconnecting the cutoff function |  |
| Incorrect temperature reading                                                                        | Defective temperature sensor                                                        | Replace the sensor pair                                                                                                             |  |
|                                                                                                      | Insufficient installation                                                           | Check the installation                                                                                                              |  |
| Temperature indication a little too<br>low, or accumulation of energy (e.g.<br>MWh) slightly too low | Bad thermic sensor contact<br>Heat dissipation<br>Too short sensor pockets          | Place the sensors at the bottom of<br>the sensor pockets<br>Insulate sensor pockets<br>Replace by longer pockets                    |  |

# 17 Disposal

Kamstrup A/S holds an environmental certification according to ISO 14001, and as part of our environment policy we use materials which can be recovered environmentally correct to the greatest possible extent.



As from August 2005 Kamstrups heat meters are marked according to EU Directive 2002/96/EEC and the standard EN 50419.

The purpose of the marking is to inform our customers that the heat meter cannot be disposed of as ordinary waste.

#### • Disposal

Kamstrup accept outworn MULTICAL<sup>®</sup> 402 for environmentally correct disposal according to previous agreement. The disposal arrangement is free of charge to the customer, except for the cost of transportation to Kamstrup A/S or the nearest disposal system.

The meters should be disassembled as described below and the separate parts handed in for approved destruction. The batteries must not be exposed to mechanical impact and the lead-in wires must not be short-circuited during transport.

| ltem                               | Material                                                              | Recommended disposal                   |  |
|------------------------------------|-----------------------------------------------------------------------|----------------------------------------|--|
| 2 x AA Lithium cells               | Lithium and thionyl chloride<br>2 x AA-cells: About 2 x 0.7 g lithium | Approved deposit of lithium cells      |  |
| D-cell lithium battery             | Lithium and thionyl chloride >UN<br>3090< D-cell: About 4.5 g lithium | Approved deposit of lithium cells      |  |
| PCBs in MULTICAL <sup>®</sup> 402  | Coppered epoxy laminate,                                              | PCB scrap for metal recovery           |  |
| (remove LC-display)                | components soldered on                                                |                                        |  |
| LC display                         | Glass and liquid crystals                                             | Approved processing of LC-<br>displays |  |
| Cables for flow sensor and sensors | Copper with silicone mantle                                           | Cable recovery                         |  |
| Transparent top cover              | РС                                                                    | Plastic recycling or<br>combustion     |  |
| PCB case and connecting base       | ABS with TPE gaskets                                                  | Plastic recycling or<br>combustion     |  |
| Wall bracket                       | PC + 20% glass                                                        | Plastic recycling or<br>combustion     |  |
| Meter case                         | > 84% alpha brass/red brass                                           | Metal recovery                         |  |
| Clamp plate                        | < 15% common steel (St 37)                                            |                                        |  |
| Transducer/reflectors              | < 1% stainless steel                                                  |                                        |  |
| Packing                            | Environmental cardboard                                               | Cardboard recycling                    |  |
| Packing                            | Polystyrene                                                           | EPS recovery                           |  |

Please send any questions you may have regarding environmental matters to:

Kamstrup A/S Att.: Quality and environmental dept. Fax.: +45 89 93 10 01 info@kamstrup.dk

## **18 Documents**

|                               | Danish   | English  | German   | Russian  |
|-------------------------------|----------|----------|----------|----------|
| Technical description         | 5512-741 | 5512-742 | 5512-743 | 5512-744 |
| Data sheet                    | 5810-724 | 5810-725 | 5810-726 | 5810-727 |
| Installation and user's guide | 5512-771 | 5512-772 | 5512-773 | 5512-774 |

MULTICAL<sup>®</sup> 402